Re: DownValues
- To: mathgroup at smc.vnet.net
- Subject: [mg113744] Re: DownValues
- From: Stephan <stschiff80 at googlemail.com>
- Date: Wed, 10 Nov 2010 06:28:25 -0500 (EST)
Thanks everyone for your replies. It's nice to have this command at hand. Stephan Am 09.11.2010 um 08:52 schrieb Bob Hanlon: > > The documentation on SubValues is extremely limited but it is not totally undocumented. > > Names["*Values"] > > {DefaultValues, DownValues, DynamicModuleValues, FormatValues, NValues, OwnValues, SingularValues, SubValues, UpValues} > > Information[SubValues] > > SubValues[f] gives a list of transformation rules corresponding to all subvalues (values for f[x,\[Ellipsis]][\[Ellipsis]], etc.) defined for the symbol f. > > Attributes[SubValues]=={HoldAll,Protected} > > Options[SubValues]=={Sort->True} > > > It is also referenced in: > ref/message/DownValues/vlist > ref/message/DownValues/vrule > ParallelTools/tutorial/RemoteDefinitions > > > Bob Hanlon > > ---- Albert Retey <awnl at gmx-topmail.de> wrote: > > ========================== > Am 08.11.2010 09:38, schrieb Stephan: >> Hi, >> >> Is there any way to find out about definitions like: >> >> f[1][2] == 3 ? >> >> Here is a sample run: >> >> In[1]:== f[1][2] == 3 >> Out[1]== 3 >> In[2]:== DownValues[f] >> Out[2]== {} >> In[3]:== DownValues[f[1]] >> During evaluation of In[3]:== DownValues::"sym" : " >> StyleBox[\"\\\"\< is expected to be a symbol.\>\\\"\", \"MT\"] \ >> Out[3]== DownValues[f[1]] >> >> So with "DownValues" I can't seem to learn about the definition f[1][2].= .. > > SubValues, unfortunatly seem to be undocumented, but gives you what you > are looking for: > > SubValues[f] > > hth, > > albert > >