Re: 2-D Butterworth lowpass filter?
- To: mathgroup at smc.vnet.net
- Subject: [mg113791] Re: 2-D Butterworth lowpass filter?
- From: Patrick Scheibe <pscheibe at trm.uni-leipzig.de>
- Date: Sat, 13 Nov 2010 00:58:18 -0500 (EST)
Hi, using Gonzalez/Woods again (page 273, 3rd ed.) the transfer function is given by d[u_, v_, p_, q_] := Sqrt[(u - p/2)^2 + (v - q/2)^2] h[u_, v_, p_, q_, n_, d0_] := 1/(1 + (d[u, v, p, q]/d0)^(2 n)); I'm using a compiled version of it hc = Compile[{u, v, p, q, n, d0}, 1/(1 + (Sqrt[(u - p/2)^2 + (v - q/2)^2]/d0)^(2 n))]; hcompiled[u_?NumericQ, v_?NumericQ, p_?NumericQ, q_?NumericQ, n_?NumericQ, d0_?NumericQ] := hc[u, v, p, q, n, d0] With this the plots on page 274 are Plot3D[hcompiled[u, v, 0, 0, 3, 3], {u, -15, 15}, {v, -15, 15}, PlotRange -> All, PlotPoints -> 30] Plot[Evaluate[h[u, 0, 0, 0, #, 5] & /@ Range[4]], {u, 0, 15}, PlotStyle -> {Thick}, PlotRange -> All] And now (taking the CenteredFourier from Matthias) CenteredFourier[img_] := Module[{data = ImageData[img], dim}, dim = Dimensions[data]; Fourier[data*(-1)^Table[i + j, {i, First[dim]}, {j, Last[dim]}]]]; CenteredInverseFourier[F_] := Module[{dim}, dim = Dimensions[F]; Image[Re[ InverseFourier[F]*(-1)^ Table[i + j, {i, First[dim]}, {j, Last[dim]}]]]]; ButterWorthFilter[img_, n_, d0_] := Module[{nx, ny, bw}, {nx, ny} = ImageDimensions[img]; bw = Table[hcompiled[u, v, nx, ny, n, d0], {v, 1, ny}, {u, 1, nx}]; CenteredInverseFourier[bw*CenteredFourier[img]] ] And to test it you could try to create figure 4.45 of the book (please check that there are no unwanted newlines in the link-strings when you copy it to the notebook!) img = Import[ "http://www.imageprocessingplace.com/downloads_V3/dip3e_downloads/\ dip3e_book_images/DIP3E_CH04_Original_Images.zip", "DIP3E_Original_Images_CH04/Fig0445(a)(characters_test_pattern).\ tif"]; GraphicsGrid@ Partition[ Flatten[{img, ButterWorthFilter[img, 2, #] & /@ {10, 30, 60, 160, 460}}], 2] I must admit that the images in the book are more blurred with the same setting. Cheers Patrick On Fri, 2010-11-12 at 05:28 -0500, hadi motamedi wrote: > Dear All > Can you please let me know how can I design and apply 2-D Butterworth > lowpass filter to my image in Mathematica? Please be informed that I > can obtain its Fourier transform but I need to design and apply > lowpass Butterworth filtering to it. > Thank you >