Re: Matrix Form of Quadratic Equations
- To: mathgroup at smc.vnet.net
- Subject: [mg114309] Re: Matrix Form of Quadratic Equations
- From: Valeri Astanoff <astanoff at gmail.com>
- Date: Tue, 30 Nov 2010 06:22:44 -0500 (EST)
- References: <ico2b2$nq6$1@smc.vnet.net> <ictg19$mjn$1@smc.vnet.net>
On Nov 28, 12:56 pm, "gianpf" <jean.pelle... at orange.fr> wrote: > Salut > > Resolve[ForAll[{x, y}, {x, y}.{{a, b}, {b, d}}.{x, y} == x^2 + y^2 - = 2 x y], > Reals] > > a == 1 && b == -1 && d == 1 > > "Ari" <ari... at finly.net> a =E9crit dans le message denews:ico2b2$nq6$1@= smc.vnet.net... > > > > > Hello, > > > Could anyone guide me how to build a mathematica module to form a Matri= x > > form from a quadratic equations? > > For example, x^2 + y^2 - 2 x y will output > > {{1, -1}, {-1, 1}} ? > > > Thanks- Hide quoted text - > > - Show quoted text - A generalized variant : In[1]:= bilin[form_, vars_List] := Module[{ lg = Length[vars], a, sym, ai }, sym = Array[a, {lg, lg}] /. a[i_, j_] /; i > j -> a[j, i]; ai = Flatten[sym] // Union; sym /. (Resolve[ForAll[vars, vars.sym.vars == form], ai] // ToRules) ]; In[2]:= bilin[a*x^2 + 2*b*x*y + c*y^2, {x, y}] Out[2]= {{a, b}, {b, c}} In[3]:= bilin[a*x^2 + 2*b*x*y + c*y^2 + d*z^2, {x, y, z}] Out[3]= {{a, b, 0}, {b, c, 0}, {0, 0, d}} v.a.