Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Can somebody integrate this function ?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg112536] Re: Can somebody integrate this function ?
  • From: Emu <samuel.thomas.blake at gmail.com>
  • Date: Sun, 19 Sep 2010 05:37:45 -0400 (EDT)
  • References: <i727ib$esu$1@smc.vnet.net>

On Sep 18, 9:24 pm, c r <riemannchristof... at gmail.com> wrote:
> Can somebody try this in your version of Mathematica ?
>
> Integrate[(5/12) (-1 + z) (y^2 - 3 z^2) (27 y^4 - 12 Sqrt[3] y^5 +
>     4 y^6 + 18 y^2 (3 - 2 z) z^2 + 3 (3 - 2 z)^2 z^4 +
>     4 Sqrt[3] y^3 z^2 (-3 + 2 z)), z]
>
> Something is definitely wrong with my version of Mathematica (7).

Here's an alternative answer

In[10]:= integrand = (5/12)*(-1 + z)*(y^2 - 3*z^2)*(27*y^4 -
     12*Sqrt[3]*y^5 + 4*y^6 + 18*y^2*(3 - 2*z)*z^2 +
     3*(3 - 2*z)^2*z^4 + 4*Sqrt[3]*y^3*z^2*(-3 + 2*z));

In[11]:= Risch[integrand, z]

Out[11]= -((45 y^6 z)/4) + 5 Sqrt[3] y^7 z - (5 y^8 z)/3 + (
 45 y^6 z^2)/8 - 5/2 Sqrt[3] y^7 z^2 + (5 y^8 z^2)/6 + (
 15 y^4 z^3)/4 - (10 y^5 z^3)/Sqrt[3] + (5 y^6 z^3)/3 + (
 15 y^4 z^4)/16 + (5 y^5 z^4)/Sqrt[3] - (5 y^6 z^4)/4 + (
 45 y^2 z^5)/4 - 3 Sqrt[3] y^3 z^5 - 3 y^4 z^5 + (
 2 y^5 z^5)/Sqrt[3] - (115 y^2 z^6)/8 + (25 y^3 z^6)/(2 Sqrt[3]) + (
 135 z^7)/28 + (25 y^2 z^7)/7 - 10/7 Sqrt[3] y^3 z^7 - (
 315 z^8)/32 + (5 y^2 z^8)/8 + (20 z^9)/3 - (3 z^10)/2

In[12]:= D[%, z] -
  5/12 (-1 + z) (y^2 - 3 z^2) (27 y^4 - 12 Sqrt[3] y^5 + 4 y^6 +
     18 y^2 (3 - 2 z) z^2 + 3 (3 - 2 z)^2 z^4 +
     4 Sqrt[3] y^3 z^2 (-3 + 2 z)) // Together

Out[12]= 0

In[13]:= PolynomialQ[%%, z]

Out[13]= True

Note that the answer from Integrate is correct.

In[17]:= Integrate[integrand, z];

In[18]:= D[%, z] - integrand // Simplify

Out[18]= 0


  • Prev by Date: Re: Contraction of Tensors in Mathematica
  • Next by Date: Re: Can somebody integrate this function ?
  • Previous by thread: Re: Can somebody integrate this function ?
  • Next by thread: Re: Can somebody integrate this function ?