Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Can somebody integrate this function ?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg112533] Re: Can somebody integrate this function ?
  • From: Murray Eisenberg <murray at math.umass.edu>
  • Date: Sun, 19 Sep 2010 05:37:11 -0400 (EDT)

   $Version
7.0 for Microsoft Windows (32-bit) (February 18, 2009)

   f=(5/12) (-1+z) (y^2-3 z^2) (27 y^4-12 Sqrt[3] y^5+4 y^6+18 y^2 (3-2 
z) z^2+3 (3-2 z)^2 z^4+4 Sqrt[3] y^3 z^2 (-3+2 z));

   (int = Integrate[f, z]) // InputForm
-(z*(13440*Sqrt[3]*y^13*(-2 + z) - 2240*y^14*(-2 + z) +
     1120*y^12*(162 - 81*z - 4*z^2 + 3*z^3) + 72*Sqrt[3]*y^7*z^4*
      (2856 - 2485*z - 822*z^2 + 798*z^3) + 3*(3 - 2*z)^2*z^10*
      (-3240 + 6615*z - 4480*z^2 + 1008*z^3) -
     224*Sqrt[3]*y^11*(810 - 405*z - 40*z^2 - 5*z^3 + 28*z^4) +
     756*y^10*(270 - 135*z + 80*z^2 - 200*z^3 + 112*z^4) +
     24*Sqrt[3]*y^9*z^2*(-7560 + 12285*z - 4396*z^2 - 1260*z^3 +
       440*z^4) - 12*Sqrt[3]*y^5*z^6*(-24912 + 49203*z - 30632*z^2 +
       4844*z^3 + 728*z^4) + 27*y^4*z^6*(-20880 + 38745*z - 20424*z^2 +
       400*z^3 + 1456*z^4) + 4*Sqrt[3]*y^3*z^8*(23328 - 63369*z +
       64398*z^2 - 29024*z^3 + 4896*z^4) -
     18*y^2*z^8*(21060 - 55935*z + 54630*z^2 - 22594*z^3 + 2776*z^4 +
       280*z^5) - 6*y^8*z^2*(-56700 + 82215*z + 3864*z^2 - 43960*z^3 +
       8592*z^4 + 3192*z^5) + 4*y^6*z^4*(-34020 - 14175*z + 44442*z^2 +
       27342*z^3 - 40840*z^4 + 9288*z^5)))/
  (224*(-9*y^2 + 2*Sqrt[3]*y^3 + 3*z^2*(-3 + 2*z))^2)

    D[int, z] == f // Simplify
True

On 9/18/2010 7:25 AM, c r wrote:
> Can somebody try this in your version of Mathematica ?
>
> Integrate[(5/12) (-1 + z) (y^2 - 3 z^2) (27 y^4 - 12 Sqrt[3] y^5 +
>      4 y^6 + 18 y^2 (3 - 2 z) z^2 + 3 (3 - 2 z)^2 z^4 +
>      4 Sqrt[3] y^3 z^2 (-3 + 2 z)), z]
>
> Something is definitely wrong with my version of Mathematica (7).
>
>

-- 
Murray Eisenberg                     murray at math.umass.edu
Mathematics & Statistics Dept.
Lederle Graduate Research Tower      phone 413 549-1020 (H)
University of Massachusetts                413 545-2859 (W)
710 North Pleasant Street            fax   413 545-1801
Amherst, MA 01003-9305


  • Prev by Date: Re: Can somebody integrate this function ?
  • Next by Date: Re: NSolve using crushes mathematica 7
  • Previous by thread: Re: Can somebody integrate this function ?
  • Next by thread: Re: Can somebody integrate this function ?