Re: Simplify results
- To: mathgroup at smc.vnet.net
- Subject: [mg118311] Re: Simplify results
- From: "Berthold Hamburger" <b-hamburger at artinso.com>
- Date: Thu, 21 Apr 2011 03:11:23 -0400 (EDT)
Hi Alexei and all, Thank you so much for the clarifications! Best regards Berthold Hamburger -- Berthold Hamburger - Cellist/Spain Email: behambu at artinso.com http://www.artinso.com http://www.astronomy.artinso.com Este mensaje, y los documentos en su caso anexos, se dirigen exclusivamente a su destinatario y pueden contener informaci=F3n reservada y/o CONFIDENCIAL cuyo uso no autorizado o divulgaci=F3n est=E1 prohibido por la legislaci=F3n vigente. Si ha recibido este mensaje por error, le rogamos que nos lo comunique inmediatamente por esta misma v=EDa o por tel=E9fono (+34-981613415) y proceda a su destrucci=F3n. This message and its attachments are intended exclusively for the addressee and may contain information that is privileged and/or CONFIDENTIAL. Its non authorized use or disclosure is prohibited by law. If you are not the intended recipient, please notify us immediately by the same channel as its receipt or by telephone (+34-981613415) and kindly destroy it. -----Original Message----- From: Alexei Boulbitch [mailto:alexei.boulbitch at iee.lu] Sent: mi=E9rcoles, 20 de abril de 2011 9:19 To: mathgroup at smc.vnet.net; b-hamburger at artinso.com Subject: [mg118311] Re: [mg118264] Simplify results Hi, Berthold, Nothing is really bad. The initial result: expr = (8 a^2 b^3 (c^2 + 1)^4 - 6 a^3 b^2 (c^2 + 1)^3 + 14 a^4 b (c^2 + 1)^2)/(4 a^3 b^2 (c^2 + 1)^2 - 10 a^4 b^3 (c^2 + 1)^3) expr1 = Simplify[expr] (14 a^4 b (1 + c^2)^2 - 6 a^3 b^2 (1 + c^2)^3 + 8 a^2 b^3 (1 + c^2)^4)/( 4 a^3 b^2 (1 + c^2)^2 - 10 a^4 b^3 (1 + c^2)^3) (-7 a^2 + 3 a b (1 + c^2) - 4 b^2 (1 + c^2)^2)/(a b (-2 + 5 a b (1 + c^2))) and your "hand-made" result: expr2 = (7 a^2 - 3 a b (1 + c^2) + 4 b^2 (1 + c^2)^2)/(a b (2 - 5 a b (1 + c^2))) (7 a^2 - 3 a b (1 + c^2) + 4 b^2 (1 + c^2)^2)/(a b (2 - 5 a b (1 + c^2))) differ from one another by multiplication by -1 both in the Numerator and in the Denominator. They are in fact equal to one another Numerator[expr1] Numerator[expr2] -7 a^2 + 3 a b (1 + c^2) - 4 b^2 (1 + c^2)^2 7 a^2 - 3 a b (1 + c^2) + 4 b^2 (1 + c^2)^2 Denominator[expr1] Denominator[expr2] a b (-2 + 5 a b (1 + c^2)) a b (2 - 5 a b (1 + c^2)) It is probably obvious now. Let us also make a general check: expr1 == expr2 // Simplify True and numerically: expr1 /. {a -> 1, b -> 2, c -> 3} expr2 /. {a -> 1, b -> 2, c -> 3} -(221/28) -(221/28) Have fun. Alexei Hi, This might be a silly question, so please bear with me, but I have been scratching my head about it for some time now. Is there a particular reason why Mathematica (8.01) simplifies the following fraction reversing the signs in the result: IN: Simplify[(8a^2b^3(c^2+1)^4-6a^3b^2(c^2+1)^3+14a^4b (c^2+1)^2)/(4a^3b^2(c^2+1)^2-10a^4b^3(c^2+1)^3)] OUT: (-7 a^2+3 a b (1+c^2)-4 b^2 (1+c^2)^2)/(a b (-2+5 a b (1+c^2))) Reducing the fraction by hand gives me: (7 a^2-3 a b (1+c^2)+4 b^2 (1+c^2)^2)/(a b (2-5 a b (1+c^2))) Thanks Berthold -- Berthold Hamburger - Cellist/Spain Email: behambu at artinso.com http://www.artinso.com http://www.astronomy.artinso.com -- Alexei Boulbitch, Dr. habil. Senior Scientist Material Development IEE S.A. ZAE Weiergewan 11, rue Edmond Reuter L-5326 CONTERN Luxembourg Tel: +352 2454 2566 Fax: +352 2454 3566 Mobile: +49 (0) 151 52 40 66 44 e-mail: alexei.boulbitch at iee.lu www.iee.lu -- This e-mail may contain trade secrets or privileged, undisclosed or otherwise confidential information. If you are not the intended recipient and have received this e-mail in error, you are hereby notified that any review, copying or distribution of it is strictly prohibited. Please inform us immediately and destroy the original transmittal from your system. Thank you for your co-operation.