Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123330] Re: problem in minimization of a matrix
- From: Herman <btta2010 at gmail.com>
- Date: Thu, 1 Dec 2011 08:03:58 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hi Peter,
My problem is that i want to minimize the determinant of the matrix \Tau over all values of the matrix \Sigma but couldn't understand
\[Sigma]M[\[Rho]_, \[Phi]_] =
Cosh[2 \[Rho]]/
2 ({{1 +
Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]],
1 - Tanh[2 \[Rho]] Cos[\[Phi]]}});
I want to minimize this matrix \[Tau][\[Alpha]_, \[Omega]0_, t_, r_, \[Rho]_, \[Phi]_] =
FindMinimum[{Det[
At[\[Alpha], \[Omega]0, t,
r] - (Ct[\[Alpha], \[Omega]0, t, r]
Inverse[(At[\[Alpha], \[Omega]0, t,
r] + \[Sigma]M[\[Rho], \[CurlyPhi]])]
Ct[\[Alpha], \[Omega]0, t, r]\[Transpose])], \[Rho] >= 0,
0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}]
The matrx At & Ct are real numbers which depend on my choice of the parameters \alpha, \omega, t & r. please write if any things is unclear
Many thanks for any comment.
- Follow-Ups:
- Re: problem in minimization of a matrix
- From: DrMajorBob <btreat1@austin.rr.com>
- Re: problem in minimization of a matrix