Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123333] Re: problem in minimization of a matrix
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Fri, 2 Dec 2011 07:19:46 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112011303.IAA20311@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
That's useless without definitions for At and Ct. Bobby On Thu, 01 Dec 2011 07:03:58 -0600, Herman <btta2010 at gmail.com> wrote: > Hi Peter, > > My problem is that i want to minimize the determinant of the matrix \Tau > over all values of the matrix \Sigma but couldn't understand > > \[Sigma]M[\[Rho]_, \[Phi]_] = > Cosh[2 \[Rho]]/ > 2 ({{1 + > Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [ > 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], > 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}}); > I want to minimize this matrix \[Tau][\[Alpha]_, \[Omega]0_, t_, r_, > \[Rho]_, \[Phi]_] = > FindMinimum[{Det[ > At[\[Alpha], \[Omega]0, t, > r] - (Ct[\[Alpha], \[Omega]0, t, r] > Inverse[(At[\[Alpha], \[Omega]0, t, > r] + \[Sigma]M[\[Rho], \[CurlyPhi]])] > Ct[\[Alpha], \[Omega]0, t, r]\[Transpose])], \[Rho] >= 0, > 0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}] > > The matrx At & Ct are real numbers which depend on my choice of the > parameters \alpha, \omega, t & r. please write if any things is unclear > > Many thanks for any comment. > -- DrMajorBob at yahoo.com
- References:
- Re: problem in minimization of a matrix
- From: Herman <btta2010@gmail.com>
- Re: problem in minimization of a matrix