NDSolve, three 2-d order ODE, 6 initial conditions
- To: mathgroup at smc.vnet.net
- Subject: [mg115168] NDSolve, three 2-d order ODE, 6 initial conditions
- From: michael partensky <partensky at gmail.com>
- Date: Mon, 3 Jan 2011 03:56:52 -0500 (EST)
Hi, group! An attempt to demonstrate a (restricted) analogy between the Bloch (magnetic resonance) equation and the motion equation for a charged particle in the magnetic field leads to the following equation: ndSol[w_, w0_, w1_, x0_, y0_, z0_, v0x_, v0y_, v0z_, t1_] := NDSolve[{Cos[w t ] D[x[t], {t, 2}] + Sin[ w t] D[y[t], {t, 2}] - w Sin[w t] D[x[t], t] + w Cos[w t] D[y[t], t] == (w - w0) ( Sin[w t ] D[x[t], t] - Cos[w t] D[y[t], t]), -Sin[w t] D[x[t], {t, 2}] + Cos[w t] D[y[t], {t, 2}] == (w - w0) (Cos[w t] D[x[t], t] + Sin[w t] D[y[t], t]) + w1 D[z[t], t], D[z, {t, 2}] == w1 (Sin[w t] D[x[t], t] - Cos[w1 t] D[y[t], t]), (D[x[t], t] /. {t -> 0} ) == v0x, (D[y[t], t] /. {t -> 0} ) == v0y, (D[z[t], t] /. {t -> 0}) == v0z, x[0] == x0, y[0] == y0, z[0] == z0 }, {x[t], y[t], z[t]}, {t, t1}]; Apparently there is an error - u will see the message. Could you please help catching it? Thanks Michael Partenskii