Re: Plot works in Mathematca 7 but not in Mathematica 8 [CORRECTION]
- To: mathgroup at smc.vnet.net
- Subject: [mg115873] Re: Plot works in Mathematca 7 but not in Mathematica 8 [CORRECTION]
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 23 Jan 2011 05:37:51 -0500 (EST)
I left off the definition of a in my previous response. Use this f[ki_?NumericQ, h_, a_, kn_?NumericQ, kr_?NumericQ] := Abs[((kn^2 - (kr + ki I)^2)*(4 h (Log[4 h/a] - NIntegrate[(1 - Exp[I (kr + ki I) y Cos[kn y]])/y, {y, 0, 2}]) + I/((kr + ki I) + kn) (Exp[ I 2 ((kr + ki I) + kn) h] - 1) + I/((kr + ki I) - kn) (Exp[I 2 ((kr + ki I) - kn) h] - 1)) - (kn^2 + (kr + ki I)^2)* NIntegrate[Exp[I (kr + ki I) y] Sin[kn y]/y, {y, 0, 2}])] h = 1; a = 0.0001; kn = Pi/h; kr = 3.050; Plot[f[ki, h, a, kn, kr], {ki, -0.23, -.10}] Bob Hanlon ---- Bob Hanlon <hanlonr at cox.net> wrote: ============= Works if you pull the function out of the Plot. $Version "8.0 for Mac OS X x86 (64-bit) (November 6, 2010)" f[ki_?NumericQ, h_, kn_?NumericQ, kr_?NumericQ] := Abs[((kn^2 - (kr + ki I)^2)*(4 h (Log[4 h/a] - NIntegrate[(1 - Exp[I (kr + ki I) y Cos[kn y]])/y, {y, 0, 2}]) + I/((kr + ki I) + kn) (Exp[I 2 ((kr + ki I) + kn) h] - 1) + I/((kr + ki I) - kn) (Exp[I 2 ((kr + ki I) - kn) h] - 1)) - (kn^2 + (kr + ki I)^2)* NIntegrate[Exp[I (kr + ki I) y] Sin[kn y]/y, {y, 0, 2}])] h = 1; kn = Pi/h; kr = 3.050; Plot[f[ki, h, kn, kr], {ki, -0.23, -.10}] Bob Hanlon ---- "1.156" <rob at piovere.com> wrote: ============= I've found very little to complain about using Mathematica 8 but I just ran into a Plot which only displays the two plot axes, no graph. Fortunately I still have Mathematica 7 installed and found that Mathematica 7 Plots this same code nicely. Can anyone give me clues on what may make this work correctly in Mathematica 8? Code below, thanks. *************** h = 1; a = 0.0001; kn = Pi/h; kr = 3.050; Plot[Abs[((kn^2 - (kr + ki I)^2)* (4 h (Log[4 h/a] - NIntegrate[(1 - Exp[I (kr + ki I) y Cos[kn y]])/y, {y, 0, 2}]) + I/((kr + ki I) + kn) (Exp[I 2 ((kr + ki I) + kn) h] - 1) + I/((kr + ki I) - kn) (Exp[I 2 ((kr + ki I) - kn) h] - 1) ) - (kn^2 + (kr + ki I)^2)* NIntegrate[ Exp[I (kr + ki I) y] Sin[kn y]/y, {y, 0, 2}])], {ki, -0.23, -.10}] --