implicit surfaces from older version of Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg119510] implicit surfaces from older version of Mathematica
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Tue, 7 Jun 2011 06:47:40 -0400 (EDT)
This version was developed in version 3 ( I think) and was really slow and took up too much memory... It works in version 8, but there has to be an easier way... Pictures are pretty in 8 and it has the real time effect build it where you don't need all the views. (* <<Graphics`ContourPlot3D`*) Clear[A, B, c, rho, x, y, z, f, g, FermiPlot, p, t] Clear[g, gg, a, p, q, r, x, y, z, x0, y0, z0] m = {{x, y, z, 0}, {y, z, 0, -x}, {z, 0, -x, -y}, {0, -x, -y, -z}} f[x_, y_, z_] = ExpandAll[Det[m] - 1] FermiPlot[energy_]:= ContourPlot3D[ f[kx,ky,-kz], {kx,-0.001, -Pi/2+0.001},{ky, -0.001, -Pi/2+0.001},{kz, -0.001, -Pi/2+0.001},PlotPoints->6, Contours -> {energy},Boxed->False]; g1 = FermiPlot[0.000001] FermiPlot[energy_]:= ContourPlot3D[ f[kx,ky,-kz], {kx,0.001, Pi/2-0.001},{ky, 0.001, Pi/2-0.001},{kz, 0.001, Pi/ 2-0.001},PlotPoints->6, Contours -> {energy}]; g2 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, 0.001, Pi/2 - 0.001}, {ky, -0.001, -Pi/2 + 0.001}, {kz, -0.001, -Pi/2 + 0.001}, PlotPoints -> 6, Contours -> {energy}]; g3 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, 0.001, Pi/2 - 0.001}, {ky, 0.001, Pi/2 - 0.001}, {kz, -0.001, -Pi/2 + 0.001}, PlotPoints -> 6, Contours -> {energy}]; g4 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, -0.001, -Pi/2 + 0.001}, {ky, -0.001, -Pi/2 + 0.001}, {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6, Contours -> {energy}]; g5 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, -0.001, -Pi/2 + 0.001}, {ky, 0.001, Pi/2 - 0.001}, {kz, -0.001, -Pi/2 + 0.001}, PlotPoints -> 6, Contours -> {energy}]; g6 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, 0.001, Pi/2 - 0.001}, {ky, -0.001, -Pi/2 + 0.001}, {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6, Contours -> {energy}]; g7 = FermiPlot[0.000001] FermiPlot[energy_] := ContourPlot3D[ f[kx, ky, -kz], {kx, -0.001, -Pi/2 + 0.001}, {ky, 0.001, Pi/2 - 0.001}, {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6, Contours -> {energy}]; g8 = FermiPlot[0.000001] ga = Show[{g1, g2, g3, g4, g5, g6, g7, g8}, Boxed -> False, PlotRange \ [Rule] All, Axes \[Rule] False] Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {0.000, -0.045, 3.384}, PlotRange \[Rule] All, Axes \[Rule] False] Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {0.009, -3.331, 0.597}, Boxed -> False, PlotRange \[Rule] All, Axes \[Rule] False] Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {-3.329, 0.088, 0.597}, Boxed -> False, PlotRange \[Rule] All, Axes \[Rule] False]
- Follow-Ups:
- Re: implicit surfaces from older version of Mathematica
- From: Heike Gramberg <heike.gramberg@gmail.com>
- Re: implicit surfaces from older version of Mathematica