Re: implicit surfaces from older version of Mathematica

• To: mathgroup at smc.vnet.net
• Subject: [mg119547] Re: implicit surfaces from older version of Mathematica
• From: Heike Gramberg <heike.gramberg at gmail.com>
• Date: Wed, 8 Jun 2011 07:16:28 -0400 (EDT)
• References: <201106071047.GAA05975@smc.vnet.net>

```If it's only the last three plots you're interested in, you can do
something like

FermiPlot[energy_] :=
ContourPlot3D[
f[kx, ky, -kz], {kx, -Pi/2, Pi/2}, {ky, -Pi/2, Pi/2}, {kz, -Pi/2,
Pi/2}, PlotPoints -> 20, Contours -> {energy}, Boxed -> False,
Axes -> False];

Row[Show[FermiPlot[0.000001], ViewPoint -> #, ImageSize -> 300] & /@ {{0, -0.045,
3.384}, {0.009, -3.331, 0.597}, {-3.329, 0.088, 0.597}}]

Heike

On 7 Jun 2011, at 11:47, Roger Bagula wrote:

> This version was developed in version 3 ( I think)
> and was really slow and took up too much memory...
> It works in version 8, but there has to be an easier way...
> Pictures are pretty in 8 and it has the real time effect build it
> where you don't need all the views.
>
> (* <<Graphics`ContourPlot3D`*)
> Clear[A, B, c, rho, x, y, z, f, g, FermiPlot, p, t]
> Clear[g, gg, a, p, q, r, x, y, z, x0, y0, z0]
>
> m = {{x, y, z, 0},
>  {y, z, 0, -x},
>  {z, 0, -x, -y},
>  {0, -x, -y, -z}}
> f[x_, y_, z_] = ExpandAll[Det[m] - 1]
>
>  FermiPlot[energy_]:=
>        ContourPlot3D[
>        f[kx,ky,-kz],
>        {kx,-0.001, -Pi/2+0.001},{ky, -0.001, -Pi/2+0.001},{kz,
> -0.001, -Pi/2+0.001},PlotPoints->6,
>                Contours -> {energy},Boxed->False];
> g1 = FermiPlot[0.000001]
>
>  FermiPlot[energy_]:=
>        ContourPlot3D[
>        f[kx,ky,-kz],
>        {kx,0.001, Pi/2-0.001},{ky, 0.001, Pi/2-0.001},{kz, 0.001, Pi/
> 2-0.001},PlotPoints->6,
>                Contours -> {energy}];
> g2 = FermiPlot[0.000001]
>
>  FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, 0.001, Pi/2 - 0.001}, {ky, -0.001, -Pi/2 + 0.001},
> {kz, -0.001, -Pi/2 + 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g3 = FermiPlot[0.000001]
>
>  FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, 0.001, Pi/2 - 0.001}, {ky, 0.001, Pi/2 - 0.001}, {kz,
> -0.001, -Pi/2 + 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g4 = FermiPlot[0.000001]
>
>  FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, -0.001, -Pi/2 + 0.001}, {ky, -0.001, -Pi/2 + 0.001},
> {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g5 = FermiPlot[0.000001]
>
>  FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, -0.001, -Pi/2 + 0.001}, {ky, 0.001, Pi/2 - 0.001},
> {kz, -0.001, -Pi/2 + 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g6 = FermiPlot[0.000001]
>
>  FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, 0.001, Pi/2 - 0.001}, {ky, -0.001, -Pi/2 + 0.001},
> {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g7 = FermiPlot[0.000001]
> FermiPlot[energy_] :=
>          ContourPlot3D[
>           f[kx, ky, -kz],
>           {kx, -0.001, -Pi/2 + 0.001}, {ky, 0.001, Pi/2 - 0.001},
> {kz, 0.001, Pi/2 - 0.001}, PlotPoints -> 6,
>                   Contours -> {energy}];
> g8 = FermiPlot[0.000001]
> ga = Show[{g1, g2, g3, g4, g5, g6, g7, g8}, Boxed -> False, PlotRange \
> [Rule] All, Axes \[Rule] False]
> Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {0.000, -0.045,
> 3.384}, PlotRange \[Rule] All, Axes \[Rule] False]
> Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {0.009, -3.331,
> 0.597}, Boxed -> False, PlotRange \[Rule] All, Axes \[Rule] False]
> Show[{g1, g2, g3, g4, g5, g6, g7, g8}, ViewPoint -> {-3.329, 0.088,
> 0.597}, Boxed -> False, PlotRange \[Rule] All, Axes \[Rule] False]
>

```

• Prev by Date: Re: How show axes labels with AxesOrigin->{0,0,0} in 3D?
• Next by Date: Re: Curve Tracking and fetching Locator coordinates
• Previous by thread: implicit surfaces from older version of Mathematica
• Next by thread: Re: implicit surfaces from older version of Mathematica