Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118610] Re: Expected value of the Geometric distribution
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 4 May 2011 06:35:06 -0400 (EDT)
dist = GumbelDistribution[a, b]; Moment[dist, 1] a - b EulerGamma Mean[dist] a - b EulerGamma ExpectedValue[x, dist, x] a - b EulerGamma Assuming[{Element[{a, b}, Reals], b > 0}, Integrate[x*PDF[dist, x], {x, -Infinity, Infinity}]] a - b EulerGamma Bob Hanlon ---- Tonja Krueger <tonja.krueger at web.de> wrote: ============= Dear everybody, Thank you all for your kind help. But I'm still stuck trying to find the expected value for a continuous distribution like the Gumbel distribution or GEV, Weibull. Moment[GumbelDistribution[\[Alpha], \[Beta]], 1] gives this as result: \[Alpha] - EulerGamma \[Beta] But when I try using Integrate[ E^(-E^(-((x - \[Mu])/\[Beta])) - (x - \[Mu])/\[Beta])/\[Beta]* x, {x, -\[Infinity], \[Infinity]}] This is what I get: ConditionalExpression[\[Beta] (EulerGamma + Log[E^(\[Mu]/\[Beta])] - E^-E^((\[Mu]/\[Beta])) Log[E^(-(\[Mu]/\[Beta]))] + Log[E^(\[Mu]/\[Beta])])), Re[\[Beta]] > 0] I am stumped. Tonja ___________________________________________________________ Schon geh=C3=B6rt? WEB.DE hat einen genialen Phishing-Filter in die Toolbar eingebaut! http://produkte.web.de/go/toolbar