Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118614] Re: Expected value of the Geometric distribution
- From: Andy Ross <andyr at wolfram.com>
- Date: Wed, 4 May 2011 06:35:50 -0400 (EDT)
On 5/3/2011 7:22 AM, Tonja Krueger wrote: > Dear everybody, > Thank you all for your kind help. But I'm still stuck trying to find the expected value for a continuous distribution like the Gumbel distribution or GEV, Weibull. > Moment[GumbelDistribution[\[Alpha], \[Beta]], 1] > gives this as result: > \[Alpha] - EulerGamma \[Beta] > But when I try using > Integrate[ E^(-E^(-((x - \[Mu])/\[Beta])) - (x - \[Mu])/\[Beta])/\[Beta]* x, {x, -\[Infinity], \[Infinity]}] > This is what I get: > ConditionalExpression[\[Beta] (EulerGamma + Log[E^(\[Mu]/\[Beta])] - E^-E^((\[Mu]/\[Beta])) Log[E^(-(\[Mu]/\[Beta]))] + Log[E^(\[Mu]/\[Beta])])), Re[\[Beta]]> 0] > I am stumped. > Tonja > ___________________________________________________________ > Schon geh=C3=B6rt? WEB.DE hat einen genialen Phishing-Filter in die > Toolbar eingebaut! http://produkte.web.de/go/toolbar > If you Integrate with the assumptions of the distribution you should get what you are expecting... Integrate[(E^(-E^((x - \[Alpha])/\[Beta]) + (x - \[Alpha])/\[Beta])*x)/\[Beta],{x,-\[Infinity],\[Infinity]},Assumptions->DistributionParameterAssumptions[GumbelDistribution[\[Alpha],\[Beta]]]] -Andy