Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118627] Re: Expected value of the Geometric distribution
- From: Peter Breitfeld <phbrf at t-online.de>
- Date: Wed, 4 May 2011 19:48:30 -0400 (EDT)
- References: <ipos29$i2t$1@smc.vnet.net>
"Tonja Krueger" wrote: > Dear everybody, > Thank you all for your kind help. But I'm still stuck trying to find > the expected value for a continuous distribution like the Gumbel > distribution or GEV, Weibull. > Moment[GumbelDistribution[\[Alpha], \[Beta]], 1] > gives this as result: > \[Alpha] - EulerGamma \[Beta] > But when I try using > Integrate[ E^(-E^(-((x - \[Mu])/\[Beta])) - (x - > \[Mu])/\[Beta])/\[Beta]* x, {x, -\[Infinity], \[Infinity]}] > This is what I get: > ConditionalExpression[\[Beta] (EulerGamma + Log[E^(\[Mu]/\[Beta])] - > E^-E^((\[Mu]/\[Beta])) Log[E^(-(\[Mu]/\[Beta]))] + > Log[E^(\[Mu]/\[Beta])])), Re[\[Beta]] > 0] > I am stumped. > Tonja Because GumpelDistribution ist defined for real mu and positive beta you should take these Assumptions in Integrate: Integrate[ E^(-E^(-((x - mu)/beta)) - (x - mu)/beta)/beta* x, {x, -Infinity, Infinity}, Assumptions -> {mu] \[Element] Reals, beta > 0}] Out= EulerGamma beta + mu Alternatively, you can Simplify your ConditionalExpression (I'll name it int) simpbeta=Simplify[int,beta>0] Out beta (EulerGamma + Log[E^(mu/beta)] - E^-E^((mu/beta)) (Log[E^(-(mu/beta))] + Log[E^(mu/beta)])) Mathematica assumes all variables to be potentially complex, so Log[E^x] is not automatically simplified to x because Log is a multivalued function. You can in this case either use PowerExpand[simpbeta] or declare mu to be real Simplify[int,beta>0 && Element[mu,Reals]] This will give you the desired result. -- _________________________________________________________________ Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de