Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118596] Re: Expected value of the Geometric distribution
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Wed, 4 May 2011 06:32:35 -0400 (EDT)
You need Assumptions: Integrate[ x PDF[GumbelDistribution[\[Alpha], \[Beta]], x], {x, -\[Infinity], \[Infinity]}, Assumptions -> {Element[\[Alpha], Reals], \[Beta] > 0}] \[Alpha] - EulerGamma \[Beta] Bobby On Tue, 03 May 2011 07:22:14 -0500, Tonja Krueger <tonja.krueger at web.de> wrote: > Dear everybody, > Thank you all for your kind help. But I'm still stuck trying to find the > expected value for a continuous distribution like the Gumbel > distribution or GEV, Weibull. > Moment[GumbelDistribution[\[Alpha], \[Beta]], 1] > gives this as result: > \[Alpha] - EulerGamma \[Beta] > But when I try using > Integrate[ E^(-E^(-((x - \[Mu])/\[Beta])) - (x - > \[Mu])/\[Beta])/\[Beta]* x, {x, -\[Infinity], \[Infinity]}] > This is what I get: > ConditionalExpression[\[Beta] (EulerGamma + Log[E^(\[Mu]/\[Beta])] - > E^-E^((\[Mu]/\[Beta])) Log[E^(-(\[Mu]/\[Beta]))] + > Log[E^(\[Mu]/\[Beta])])), Re[\[Beta]] > 0] > I am stumped. > Tonja > ___________________________________________________________ > Schon geh=C3=B6rt? WEB.DE hat einen genialen Phishing-Filter in die > Toolbar eingebaut! http://produkte.web.de/go/toolbar > -- DrMajorBob at yahoo.com