Re: ContourPlot with variable functions as input
- To: mathgroup at smc.vnet.net
- Subject: [mg118890] Re: ContourPlot with variable functions as input
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 14 May 2011 03:08:55 -0400 (EDT)
- Reply-to: hanlonr at cox.net
P1 = {-1, 1}; P2 = {-(1/7), -(9/7)}; P3 = {1, 1}; Note how Point is used in the Epilog ContourPlot[{5 + 8 x + 3 y == 0, y == 1}, {x, -10, 10}, {y, -15, 10}, Axes -> True, AxesLabel -> {x, y}, PlotLabel -> Style[Framed["Conics & tangents."], 16, Black, Background -> Lighter[Green]], Frame -> False, ImageSize -> {550, 400}, Epilog -> {PointSize[0.02], Point[{P1, P2, P3}]}] {L1, L2} = {5 + 8 x + 3 y == 0, y == 1}; ContourPlot[Evaluate[{L1, L2}], {x, -10, 10}, {y, -15, 10}, Axes -> True, AxesLabel -> {x, y}, PlotLabel -> Style[Framed["Conics & tangents."], 16, Black, Background -> Lighter[Green]], Frame -> False, ImageSize -> {550, 400}, Epilog -> {PointSize[0.02], Point[{P1, P2, P3}]}] Bob Hanlon ---- sigismond kmiecik <sigismond.kmiecik at wanadoo.fr> wrote: ============= Hello Bob Another question from a moderately experienced user in Mathematica. With the code below, I have no problem P1 = {-1, 1}; P2 = {-(1/7), -(9/7)}; P3 = {1, 1} ContourPlot[{5 + 8 x + 3 y == 0, y == 1}, {x, -10, 10}, {y, -15, 10}, Axes -> True, AxesLabel -> {x, y}, PlotLabel -> Style[Framed["Conics & tangents."], 16 , Black, Background -> Lighter[Green]], Frame -> False, ImageSize -> {550, 400}, Epilog -> {PointSize[0.02], Point[{P1[[1]], P1[[2]]}], Point[{P2[[1]], P2[[2]]}], Point[{P3[[1]], P3[[2]]}] } ] However I had to hardcode the two functions which were obtained from a previous Mathematica computation which may change according to initial parametres supplied (and not end necessarily with line functions): Although L1 and L2 look like correct input to Contourplot In[15]:= L1 Out[15]= 5 + 8 x + 3 y == 0 In[14]:= L2 Out[14]= y == 1 the code below ends up with only dots on the plane (and no error or warning messages) ContourPlot[{Evaluate[L1], Evaluate[L2]}, {x, -10, 10}, {y, -15, 10}, Axes -> True, AxesLabel -> {x, y}, PlotLabel -> Style[Framed["Conics & tangents"], 16 , Black, Background -> Lighter[Green]], Frame -> False, ImageSize -> {550, 400}, Epilog -> {PointSize[0.02], Point[{P1[[1]], P1[[2]]}], Point[{P2[[1]], P2[[2]]}], Point[{P3[[1]], P3[[2]]}] } ] How can be this be modified in order to plot everything? What's wrong with this approach? Thanks Best regards Sigismond Kmiecik