Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: problem in minimization of a matrix

  • To: mathgroup at smc.vnet.net
  • Subject: [mg122893] Re: problem in minimization of a matrix
  • From: Peter Pein <petsie at dordos.net>
  • Date: Mon, 14 Nov 2011 07:09:07 -0500 (EST)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • References: <j9o3ib$v$1@smc.vnet.net>

Am 13.11.2011 10:44, schrieb Herman16:
> \[Sigma]M[\[Rho]_, \[Phi]_] :=
>   ArrayFlatten[
>    Cosh[2 \[Rho]]/
>     2 ({{1 +
>         Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
>           2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]],
>        1 - Tanh[2 \[Rho]] Cos[\[Phi]]}})]
>
> NMinimize[{\[Sigma]M[\[Rho], \[Phi]], \[Rho]>= 0,
>    0<= \[Phi]<= 2 \[Pi]}, {\[Rho], \[Phi]}]
>
> \[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_,
>    r_, \[Rho]_, \[Phi]_] :=
>   Det[At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] -
>     Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]
>      Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t,
>          r] + \[Sigma]M[\[Rho], \[Phi]])]
>      Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose]]
>
> But the matrix  At&  Ct are depend on numbers, the minimization is on \
> the matrix \[Sigma]M[\[Rho]_, \[Phi]_]
>

How do you define a comparison relation on matrices?




  • Prev by Date: Re: Question for Partial differential summationseries
  • Next by Date: Re: Questions about IMS 2010 in China?
  • Previous by thread: problem in minimization of a matrix
  • Next by thread: Re: problem in minimization of a matrix