Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg122893] Re: problem in minimization of a matrix
- From: Peter Pein <petsie at dordos.net>
- Date: Mon, 14 Nov 2011 07:09:07 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j9o3ib$v$1@smc.vnet.net>
Am 13.11.2011 10:44, schrieb Herman16: > \[Sigma]M[\[Rho]_, \[Phi]_] := > ArrayFlatten[ > Cosh[2 \[Rho]]/ > 2 ({{1 + > Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [ > 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], > 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}})] > > NMinimize[{\[Sigma]M[\[Rho], \[Phi]], \[Rho]>= 0, > 0<= \[Phi]<= 2 \[Pi]}, {\[Rho], \[Phi]}] > > \[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, > r_, \[Rho]_, \[Phi]_] := > Det[At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - > Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] > Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, > r] + \[Sigma]M[\[Rho], \[Phi]])] > Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose]] > > But the matrix At& Ct are depend on numbers, the minimization is on \ > the matrix \[Sigma]M[\[Rho]_, \[Phi]_] > How do you define a comparison relation on matrices?