MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: problem in minimization of a matrix


\[Sigma]M[\[Rho]_, \[Phi]_] := 
 Cosh[2 \[Rho]]/
  2 ({{1 + Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
        2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], 
     1 - Tanh[2 \[Rho]] Cos[\[Phi]]}})
\[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, 
  r_, \[Rho]_, \[Phi]_] := 
 At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - 
   Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] 
    Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, 
        r] + \[Sigma]M[\[Rho], \[Phi]])] 
    Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose]
I need to minimize Det[\[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, 
  r_, \[Rho]_, \[Phi]_]] 
But the But the matrix At[0.1,100,2,0.1,t,0.5]& Ct[0.1,100,2,0.1] are defined in my notebook and real numbers. My question is that how can i find the minimization over tau



  • Prev by Date: Re: Problem displaying user-created .cdf files
  • Next by Date: Re: All previous notebooks open at startup
  • Previous by thread: Re: problem in minimization of a matrix
  • Next by thread: Re: problem in minimization of a matrix