Re: problem in minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123014] Re: problem in minimization of a matrix
- From: Herman16 <btta2010 at gmail.com>
- Date: Sun, 20 Nov 2011 05:38:06 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
\[Sigma]M[\[Rho]_, \[Phi]_] := Cosh[2 \[Rho]]/ 2 ({{1 + Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [ 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}}) \[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_, \[Rho]_, \[Phi]_] := At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + \[Sigma]M[\[Rho], \[Phi]])] Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose] I need to minimize Det[\[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_, \[Rho]_, \[Phi]_]] But the But the matrix At[0.1,100,2,0.1,t,0.5]& Ct[0.1,100,2,0.1] are defined in my notebook and real numbers. My question is that how can i find the minimization over tau