minimization of a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123015] minimization of a matrix
- From: Herman16 <btta2010 at gmail.com>
- Date: Sun, 20 Nov 2011 05:38:17 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
s[\[Omega]_, t_] := FullSimplify[ Integrate[ Sin[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] c[\[Omega]_, t_] := FullSimplify[ Integrate[ Cos[\[Omega] \[Tau]] Cos[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] d[\[Omega]_, t_] := FullSimplify[ Integrate[ Cos[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] J[\[Omega]_, \[Lambda]_] := \[Omega]/(\[Omega]^2 + \[Lambda]^2); J1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := (\[Alpha]^2*\[Beta]*\[Pi])/( 2 (\[Omega]0^2 + \[Lambda]^2)) (Exp [-\[Lambda]* t] ( \[Omega]0/\[Lambda]*Sin[t \[Omega]0] - Cos[t \[Omega]0]) + 1); \[CapitalDelta][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := J1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t]; J2[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_] := (\[Alpha]^2*\[Pi]*\ \[Omega]0*\[Beta])/(2 \[Lambda] (\[Omega]0^2 + \[Lambda]^2)); J3[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := -(\[Alpha]^2*\[Beta]*\[Pi]*Cos[t \[Omega]0])/( 2 (\[Omega]0^2 + \[Lambda]^2)) (Sin[ t \[Omega]0] + \[Omega]0/\[Lambda] Exp [-\[Lambda]*t]); J4[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := (\[Alpha]^2*\[Beta]*\[Pi]*Sin[t \[Omega]0])/( 2 (\[Omega]0^2 + \[Lambda]^2)) (Cos[t \[Omega]0] - Exp [-\[Lambda]*t]); J5[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := (\[Alpha]^2*\[Beta])/(\[Omega]0^2 + \[Lambda]^2) \ ((SinIntegral [\[Omega]0 t] + \[Pi]/2) + 1/2 Exp [-\[Lambda] t] ExpIntegralEi[\[Lambda] t] (\[Omega]0/\[Lambda] Cos[t \[Omega]0] - Sin[t \[Omega]0]) - 1/2 Exp [\[Lambda] t] ExpIntegralEi[-\[Lambda] t] (\[Omega]0/\[Lambda] Cos[t \[Omega]0] + Sin[t \[Omega]0])); \[CapitalPi][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := J2[\[Alpha], \[Beta], \[Omega]0, \[Lambda]] + J3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t] + J4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t]; \[Gamma][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := J5[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t]; \[CapitalGamma][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := NIntegrate[ 2*\[Gamma][\[Alpha], \[Beta], \[Omega]0, \[Lambda], s], {s, 0, t}]; \[CapitalDelta]\[CapitalGamma][\[Alpha]_, \[Beta]_, \[Omega]0_, \ \[Lambda]_, t_] := NIntegrate[ J1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s], {s, 0, t}]; \[CapitalDelta]co[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := NIntegrate[ J1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s]* Cos[2 \[Omega]0 (t - s)], {s, 0, t}]; \[CapitalDelta]si[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := NIntegrate[ J1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s]* Sin[2 \[Omega]0 (t - s)], {s, 0, t}]; \[CapitalPi]co[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := NIntegrate[(J2[\[Alpha], \[Beta], \[Omega]0, \[Lambda]] + J3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s] + J4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s])* Cos[2 \[Omega]0 (t - s)], {s, 0, t}]; \[CapitalPi]si[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_] := NIntegrate[(J2[\[Alpha], \[Beta], \[Omega]0, \[Lambda]] + J3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s] + J4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], s])* Sin[2 \[Omega]0 (t - s)], {s, 0, t}]; Clear[A0] A0[r_] = {{1/2 Cosh[2 r], 0}, {0, 1/2 Cosh[2 r]}}; Clear[At, Ct] At[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[ArrayFlatten[ A0[r]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t]) + {{\[CapitalDelta]\[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t] + (\[CapitalDelta]co[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t] - \[CapitalPi]si[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t]), -(\[CapitalDelta]si[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t] - \[CapitalPi]co[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t])}, {-(\[CapitalDelta]si[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t] - \[CapitalPi]co[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t]), \[CapitalDelta]\[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t] - (\[CapitalDelta]co[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t] - \[CapitalPi]si[\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t])}}]]; Ats[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[A0[r]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t]) + {{\[CapitalDelta]\[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t], 0}, {0, \[CapitalDelta]\[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t]}}]; Ct[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := ArrayFlatten[{{1/ 2 Sinh[2 r] Cos [ 2 \[Omega]0 t]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t]), 1/2 Sinh[2 r] Sin [ 2 \[Omega]0 t]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t])}, {1/ 2 Sinh[2 r] Sin [ 2 \[Omega]0 t]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t]), -1/2 Sinh[2 r] Cos [ 2 \[Omega]0 t]*(1 - \[CapitalGamma][\[Alpha], \[Beta], \ \[Omega]0, \[Lambda], t])}}]; \[Sigma]t[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := ArrayFlatten[{{At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r], Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]}, {Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose], At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]}}]; \[Sigma]ts[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := ArrayFlatten[{{Ats[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r], Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]}, {Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose], Ats[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]}}]; I1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Det[At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]] I1s[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Det[Ats[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]] I3[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Det[Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]] I4[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Det[\[Sigma]t[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]]; I4s[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Det[\[Sigma]ts[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]]; C1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[\[Sqrt](1/( 2 I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]) (I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + Sqrt[(I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 - (2 I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]* I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 ]))]; C1s[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[\[Sqrt](1/( 2 I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]) (I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + Sqrt[(I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 - (2 I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]*I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 ]))]; C2 [\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[\[Sqrt](1/( 2 I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]) (I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - Sqrt[(I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 - (2 I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]*I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 ]))]; C2s [\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[\[Sqrt](1/( 2 I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]) (I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - Sqrt[(I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 - I4s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 - (2 I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]*I3[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])^2 ]))]; an[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[Sqrt[I1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]]]; ans[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[Sqrt[I1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]]]; \[Kappa]1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[Sqrt[(an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - C1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])*(an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - C2[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])]] \[Kappa]1s[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[Sqrt[(ans[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - C1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])*(ans[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - C2s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])]] xm[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[(\[Kappa]1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + 1/ 4)/(2 \[Kappa]1[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])]; xms[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[(\[Kappa]1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]^2 + 1/ 4)/(2 \[Kappa]1s[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r])]; g1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[(an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + 1/2) Log [ an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + 1/ 2] - (an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - 1/ 2) Log [ an[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - 1/2]]; \[Sigma]M[\[Rho]_, \[Phi]_] := Cosh[2 \[Rho]]/ 2 ({{1 + Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [ 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}}) \[Tau][\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_, \[Rho]_, \[Phi]_] := FindMinimum[{Det At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] - Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] Inverse[(At[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r] + \[Sigma]M[\[Rho], \[Phi]])] Ct[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r]\[Transpose], \[Rho] >= 0, 0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}] k[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_, \[Rho]_, \[Phi]_] := Re[Sqrt[\[Tau][\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r, \[Rho], \[Phi]]]] k1[\[Alpha]_, \[Beta]_, \[Omega]0_, \[Lambda]_, t_, r_, \[Rho]_, \[Phi]_] := Re[(k[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r, \[Rho], \[Phi]] + 1/2) Log [ k[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r, \[Rho], \[Phi]] + 1/ 2] - (k[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r, \[Rho], \[Phi]] - 1/2) Log [ k[\[Alpha], \[Beta], \[Omega]0, \[Lambda], t, r, \[Rho], \[Phi]] - 1/2]]; I would like to minimize \[Tau][\[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t, r, \[Rho], \[Phi]] the variables \[Alpha], \[Beta], \[Omega]0, \ \[Lambda], t & r are constants.