Re: Bad Precision output for SphericaBesselY and BesselY
- To: mathgroup at smc.vnet.net
- Subject: [mg123105] Re: Bad Precision output for SphericaBesselY and BesselY
- From: Peter Pein <petsie at dordos.net>
- Date: Wed, 23 Nov 2011 07:08:05 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <jafud8$rrr$1@smc.vnet.net>
Am 22.11.2011 11:43, schrieb Antonio Alvaro Ranha Neves: > Dear users, > > Recently I'm working with precision calculations of spherical functions. Example, let, > > n = 150 > x = SetPrecision[120.3, 100] > BesselY[n + 1/2, x] // Precision > BesselJ[n+ 1/2, x] // Precision > > > Yields 67.2708 and 96.9297 respectively. The two questions are: > 1) Why does BesselY results in a worse than BesselJ? > 2) How to redefine, BesselY to automatically output a result with a desired pecision? > > Note: Simply using N[expr,90], does not yield a result of expr with 90 precision but maintains the same 67.2708. > > Thanks, > Antonio > > Hi Antonio, to get an idea which input precision is needed to get an output precision of 90: In[1]:= FindRoot[Precision[BesselY[301/2,SetPrecision[120.3,p]]]==90,{p,90},Evaluated->False] Out[1]= {p->122.729} the same for Accuracy gives {p -> 127.776} hth, Peter