Re: simplification
- To: mathgroup at smc.vnet.net
- Subject: [mg121863] Re: simplification
- From: Peter Pein <petsie at dordos.net>
- Date: Wed, 5 Oct 2011 04:01:50 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j6e693$kef$1@smc.vnet.net>
Am 04.10.2011 07:40, schrieb dimitris: > Hello. > > Let > > o1 = 1 + Sqrt[15 + 2*Sqrt[35] + 2*Sqrt[6*(6 + Sqrt[35])]]; > o2 = 1 + Sqrt[3] + Sqrt[5] + Sqrt[7]; > > o1 is equal to o2. > > o1 == o2 // FullSimplify > True > > The question is how to make Mathematica to simplify o1 to o2. > > Thanks > Dimitris > With a lot of luck: In[1]:= o1 = 1 + Sqrt[15 + 2*Sqrt[35] + 2*Sqrt[6*(6 + Sqrt[35])]]; ext = Block[{x, poly = RootReduce[o1][[1]]}, Sqrt[Cases[Union @@ Divisors[Abs[CoefficientList[poly[x], x]]], 1 | _?PrimeQ, 1]]] o2 = ((Rest[#1] / First[#1]) . ext & )[ FindIntegerNullVector[Prepend[ext, -o1]]] Out[3]= {1, Sqrt[2], Sqrt[3], Sqrt[5], Sqrt[7], Sqrt[19], Sqrt[31]} Out[4]= 1 + Sqrt[3] + Sqrt[5] + Sqrt[7] :-)
- Follow-Ups:
- Re: Re: simplification
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: simplification
- From: DrMajorBob <btreat1@austin.rr.com>
- Re: Re: simplification