Re: Re: simplification
- To: mathgroup at smc.vnet.net
- Subject: [mg121900] Re: Re: simplification
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Thu, 6 Oct 2011 04:22:02 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j6e693$kef$1@smc.vnet.net> <201110050801.EAA07025@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
This might be a trifle easier to understand: o1 = 1 + Sqrt[15 + 2*Sqrt[35] + 2*Sqrt[6*(6 + Sqrt[35])]]; poly = RootReduce[o1][[1]] coefficients = Abs@CoefficientList[poly[x], x]; divisors = Union@Flatten@Divisors@Abs@CoefficientList[poly[x], x] ext = Flatten@{1, Sqrt@Select[divisors, PrimeQ]} nullVector = FindIntegerNullVector[Prepend[ext, -o1]] o2 = ext.Rest@Normalize[nullVector, First] 1024 + 3584 #1 + 640 #1^2 - 1984 #1^3 - 48 #1^4 + 304 #1^5 - 32 #1^6 - 8 #1^7 + #1^8 & {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 20, 24, 28, 31, 32, 38, \ 40, 48, 56, 62, 64, 76, 80, 112, 124, 128, 152, 160, 224, 248, 256, \ 304, 320, 448, 496, 512, 640, 896, 992, 1024, 1792, 1984, 3584} {1, Sqrt[2], Sqrt[3], Sqrt[5], Sqrt[7], Sqrt[19], Sqrt[31]} {1, 1, 0, 1, 1, 1, 0, 0} 1 + Sqrt[3] + Sqrt[5] + Sqrt[7] Bobby On Wed, 05 Oct 2011 03:01:50 -0500, Peter Pein <petsie at dordos.net> wrote: > Am 04.10.2011 07:40, schrieb dimitris: >> Hello. >> >> Let >> >> o1 = 1 + Sqrt[15 + 2*Sqrt[35] + 2*Sqrt[6*(6 + Sqrt[35])]]; >> o2 = 1 + Sqrt[3] + Sqrt[5] + Sqrt[7]; >> >> o1 is equal to o2. >> >> o1 == o2 // FullSimplify >> True >> >> The question is how to make Mathematica to simplify o1 to o2. >> >> Thanks >> Dimitris >> > > With a lot of luck: > > In[1]:= o1 = 1 + Sqrt[15 + 2*Sqrt[35] + 2*Sqrt[6*(6 + Sqrt[35])]]; > ext = Block[{x, poly = RootReduce[o1][[1]]}, > Sqrt[Cases[Union @@ Divisors[Abs[CoefficientList[poly[x], x]]], > 1 | _?PrimeQ, 1]]] > o2 = ((Rest[#1] / First[#1]) . ext & )[ > FindIntegerNullVector[Prepend[ext, -o1]]] > > Out[3]= {1, Sqrt[2], Sqrt[3], Sqrt[5], Sqrt[7], Sqrt[19], Sqrt[31]} > > Out[4]= 1 + Sqrt[3] + Sqrt[5] + Sqrt[7] > > :-) > -- DrMajorBob at yahoo.com
- References:
- Re: simplification
- From: Peter Pein <petsie@dordos.net>
- Re: simplification