MatrixPower works inconsistently for a matrix of elements of GF[p]
- To: mathgroup at smc.vnet.net
- Subject: [mg122329] MatrixPower works inconsistently for a matrix of elements of GF[p]
- From: Francois Grieu <fgrieu at gmail.com>
- Date: Tue, 25 Oct 2011 06:18:16 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hello, I'm trying to evaluate powers of a square matrix of elements in GF[p]. I obtain mostly the correct result with MatrixPower, as follows. However, some of the elements equal to 0 (mod p) are plain 0, rather than elements of GF[p]; how could that be? <<FiniteFields`; m={ {GF[5][{1}], GF[5][{1}]}, {GF[5][{1}], GF[5][{0}]} }; For[n=1,n<12,n++,Print["n=",n," ",MatrixPower[m,n]]]; gives: n=1 {{Subscript[{1}, 5],Subscript[{1}, 5]},{Subscript[{1}, 5],Subscript[{0}, 5]}} n=2 {{Subscript[{2}, 5],Subscript[{1}, 5]},{Subscript[{1}, 5],Subscript[{1}, 5]}} n=3 {{Subscript[{3}, 5],Subscript[{2}, 5]},{Subscript[{2}, 5],Subscript[{1}, 5]}} n=4 {{0,Subscript[{3}, 5]},{Subscript[{3}, 5],Subscript[{2}, 5]}} n=5 {{Subscript[{3}, 5],0},{Subscript[{0}, 5],Subscript[{3}, 5]}} n=6 {{Subscript[{3}, 5],Subscript[{3}, 5]},{Subscript[{3}, 5],0}} n=7 {{Subscript[{1}, 5],Subscript[{3}, 5]},{Subscript[{3}, 5],Subscript[{3}, 5]}} n=8 {{Subscript[{4}, 5],Subscript[{1}, 5]},{Subscript[{1}, 5],Subscript[{3}, 5]}} n=9 {{0,Subscript[{4}, 5]},{Subscript[{4}, 5],Subscript[{1}, 5]}} n=10 {{Subscript[{4}, 5],0},{0,Subscript[{4}, 5]}} n=11 {{Subscript[{4}, 5],Subscript[{4}, 5]},{Subscript[{4}, 5],Subscript[{0}, 5]}} Also, the power n in MatrixPower[m,n] is limited: MatrixPower[m, 2^31] fails, although only 31 matrix multiplications are required to evaluate it; how comes? TIA, Francois Grieu