Re: Multiple integration: bug?
- To: mathgroup at smc.vnet.net
- Subject: [mg122399] Re: Multiple integration: bug?
- From: Ray Koopman <koopman at sfu.ca>
- Date: Thu, 27 Oct 2011 06:32:23 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j89vct$224$1@smc.vnet.net>
On Oct 26, 2:51 pm, "Dr. Wolfgang Hintze" <w... at snafu.de> wrote: > In calculating Integrals of the type Integrate[0<x1<x2<...<xn<1] which > should give 1/n! I observed a strange behaviour > > Using UnitStep[] it works fine for n=2 to n=5: > > In[48]:= > Integrate[UnitStep[x[2] - x[1]]*UnitStep[x[3] - x[2]]*UnitStep[x[4] - > x[3]]*UnitStep[x[5] - x[4]], {x[1], 0, 1}, {x[2], 0, 1}, {x[3], 0, 1}, > {x[4], 0, 1}, {x[5], 0, 1}] > Out[48]= > 1/120 > > It gives nonsense for n=6 (and higher): > > In[47]:= > Integrate[UnitStep[x[2] - x[1]]*UnitStep[x[3] - x[2]]*UnitStep[x[4] - > x[3]]*UnitStep[x[5] - x[4]]*UnitStep[x[6] - x[5]], {x[1], 0, 1}, {x[2], > 0, 1}, {x[3], 0, 1}, {x[4], 0, 1}, {x[5], 0, 1}, > {x[6], 0, 1}] > Out[47]= > -(1/4) > > Is this a bug or did I make a mistake somewhere (did not consider > bounds or depth level etc.)? > > Any comment is appreciated. > > BTW: using Boolean instead of UnitStep seems to have no restriction. > > --- Wolfgang Why not just integrate over 0 < x1 < x2 < ... < xn < 1 ? In[1]:= f[n_Integer?Positive] := Block[{x}, Integrate[1, Sequence @@ ({#2,#1,1}& @@@ Partition[Prepend[Array[x,n],0],2,1]) ] ] In[2]:= f[6] Out[2]= 1/720