Re: Derivative and Integration of NDSolve solution
- To: mathgroup at smc.vnet.net
- Subject: [mg121193] Re: Derivative and Integration of NDSolve solution
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Sat, 3 Sep 2011 08:06:08 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j3ct1i$5m0$1@smc.vnet.net>
Try fun[z_, t_, tt_] = Sign[z - v (t - tt)] (D[Tl[z, t], t] /. solution /. {z -> Abs[z - v (t - tt)], t -> tt}); \[Eta][z_, t_] := -(3 B \[Beta])/(2 \[Rho] v^2) NIntegrate[ fun[z, t, tt], {tt, -1000, 1000}] Plot[\[Eta][1, t], {t, 0, 100}] Cheers -- Sjoerd On Aug 28, 10:08 am, Jiwan Kim <hwoarang.... at gmail.com> wrote: > Hello, Mathgroup. > > By solving the coupled differential equation, I got Te[z,t] and Tl[z,t] > solution in the following code. > Then, I wanted to get the Eta[z,t] using NIntegrate function. But it is not > working. > For the detail explanation, Eta[z,t] is the integration function of > dTl[z,t]/dt at z=|z-v(t-tt)|,t=tt. > Could you help me..? plz... > > Jiwan. > > Remove["Global`*"]; > \[Rho] = 8910;(* mass density : kg/m^3 *) > v = 4.08;(* sound velocity : nm/ps *) > \[Beta] = 1.3 10^-5;(* linear expansion : /K *) > B = 1.8 10^11; (* bulk modulus : Pa *) > c = 3 10^5; (* light speed : nm/ps *) > \[Lambda] = 800; \[Omega] = > 2 \[Pi] c/\[Lambda]; (* light wavelength : nm *) > Ce = 1.065 10^3; (* electron heat cap. at 300 K : 3.19 10^5 J/m^3K *) > \ > Cl = 3.95 10^6; (* lattice heat cap. : J/m^3K = 26.1 J/mol.K *) > g = 4.4 10^5; (* coupling constant : 4.4 10^17 W/m^3.K *) > K = 91 10^6; (* thermal conductivity : 91 W/m.K -> 91 10^18 *) > \[Xi]1 = 13.5; (* pump absorption depth: nm *) > \[Xi]2 = 14.5; (* probe absorption depth: nm *) > R = 0.4; (* reflection at interface *) > \[Eta]0 = 1; > I0 = 1.05 10^10; (* 2.77 10^13 J/m^2.pulse(ps) -> 2.77 10^22 *) > PulseWidth = 0.2 ; (* 200 fs *) > > S[t_] = I0 Exp[-t^2/(2 PulseWidth)^2]; > pow[z_, t_] = 1/\[Xi]1 S[t] Exp[-z/\[Xi]1]; (* W/m^3 *) > L = 1000; (* sample thickness : nm *) > solution = > NDSolve[{Ce Te[z, t] D[Te[z, t], t] == > K D[Te[z, t], z, z] - g (Te[z, t] - Tl[z, t]) + pow[z, t], > Cl D[Tl[z, t], t] == g (Te[z, t] - Tl[z, t]), > Te[z, -2] == Tl[z, -2] == 300, (D[Te[z, t], z] /. z -> L) == > 0, (D[Te[z, t], z] /. z -> 0) == 0}, {Te, Tl}, {z, 0, L}, {t, -2, > 20}, MaxSteps -> Infinity, MaxStepSize -> {0.5, 0.02}][[1]] > Plot[{Te[z, t], Tl[z, t]} /. solution /. z -> 0, {t, -2, 20}, > PlotRange -> All] > \[Eta][z_, t_] = -(3 B \[Beta])/(2 \[Rho] v^2) > NIntegrate[ > Sign[z - > v (t - tt)] (D[Tl[z, t], t] /. > solution /. {z -> Abs[z - v (t - tt)], t -> tt}), {tt, -1000, > 1000}] > Plot[\[Eta][z, t] /. z -> 1, {t, 0, 100}] > -- > ------------------------------------------------------------------------- - > Institute of Physics and Chemistry of Materials Strasbourg (IPCMS) > Department of Ultrafast Optics and Nanophotonics (DON) > 23 rue du Loess, B.P. 43, > 67034 STRASBOURG Cedex 2, France