Re: About linear programming
- To: mathgroup at smc.vnet.net
- Subject: [mg126222] Re: About linear programming
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 26 Apr 2012 05:25:27 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201204250433.AAA06504@smc.vnet.net>
In both cases, a lower bound must be placed on Subscript[x, 3] eqns1 = {5 Subscript[x, 1] + 4 Subscript[x, 2] + 3 Subscript[x, 3], Subscript[x, 1] + Subscript[x, 3] <= 15, Subscript[x, 2] + 2 Subscript[x, 3] <= 25, Subscript[x, 3] >= x3min}; sol1 = Maximize[eqns1, {Subscript[x, 1], Subscript[x, 2], Subscript[x, 3]}]; sol1 /. x3min -> 0 {175, {Subscript[x, 1] -> 15, Subscript[x, 2] -> 25, Subscript[x, 3] -> 0}} eqns2 = Rationalize[{ 30 Subscript[x, 1] + 40 Subscript[x, 2] + 20 Subscript[x, 3] + 10 Subscript[x, 4] - 15 Subscript[x, 5] - 20 Subscript[x, 6] - 10 Subscript[x, 7] - 8 Subscript[x, 8], 0.3 Subscript[x, 1] + 0.3 Subscript[x, 2] + 0.25 Subscript[x, 3] + 0.15 Subscript[x, 4] <= 1000, 0.25 Subscript[x, 1] + 0.35 Subscript[x, 2] + 0.3 Subscript[x, 3] + 0.1 Subscript[x, 4] <= 1000, 0.45 Subscript[x, 1] + 0.5 Subscript[x, 2] + 0.4 Subscript[x, 3] + 0.22 Subscript[x, 4] <= 1000, 0.15 Subscript[x, 1] + 0.15 Subscript[x, 2] + 0.1 Subscript[x, 3] + 0.05 Subscript[x, 4] <= 1000, Subscript[x, 1] + Subscript[x, 5] == 800, Subscript[x, 2] + Subscript[x, 6] == 750, Subscript[x, 3] + Subscript[x, 7] == 600, Subscript[x, 4] + Subscript[x, 8] == 500, Subscript[x, 3] >= x3min}, 0]; sol2 = Maximize[eqns2, {Subscript[x, 1], Subscript[x, 2], Subscript[x, 3], Subscript[x, 4], Subscript[x, 5], Subscript[x, 6], Subscript[x, 7], Subscript[x, 8]}]; sol2 /. x3min -> 0 {5531000/37, {Subscript[x, 1] -> 660000/37, Subscript[x, 2] -> -(80000/37), Subscript[x, 3] -> 0, Subscript[x, 4] -> -(1000000/37), Subscript[x, 5] -> -(630400/37), Subscript[x, 6] -> 107750/37, Subscript[x, 7] -> 600, Subscript[x, 8] -> 1018500/37}} Bob Hanlon 2012/4/25 Marcela Villa Marulanda <mavima10 at gmail.com>: > Hi, > > I attempt to solve these linear programming problems in Mathematica, > but its result is "Maximize::natt: The maximum is not attained at any > point satisfying the given constraints", why? I've solved this problem > in other applications and the solution is achieved. > > I don't know the reasons about it. I'll thank to whom give me some > clues! > > Problem 1 > > Maximize[{5 Subscript[x, 1] + 4 Subscript[x, 2] + 3 Subscript[x, 3], > Subscript[x, 1] + Subscript[x, 3] <= 15 && > Subscript[x, 2] + 2 Subscript[x, 3] <= 25}, {Subscript[x, 1], > Subscript[x, 2], Subscript[x, 3]}]; > > Problem 2 > > Maximize[{30 Subscript[x, 1] + 40 Subscript[x, 2] + > 20 Subscript[x, 3] + 10 Subscript[x, 4] - 15 Subscript[x, 5] - > 20 Subscript[x, 6] - 10 Subscript[x, 7] - 8 Subscript[x, 8], > 0.3 Subscript[x, 1] + 0.3 Subscript[x, 2] + 0.25 Subscript[x, 3] + > 0.15 Subscript[x, 4] <= 1000 && > 0.25 Subscript[x, 1] + 0.35 Subscript[x, 2] + > 0.3 Subscript[x, 3] + 0.1 Subscript[x, 4] <= 1000 && > 0.45 Subscript[x, 1] + 0.5 Subscript[x, 2] + 0.4 Subscript[x, 3] + > 0.22 Subscript[x, 4] <= 1000 && > 0.15 Subscript[x, 1] + 0.15 Subscript[x, 2] + > 0.1 Subscript[x, 3] + 0.05 Subscript[x, 4] <= 1000 && > Subscript[x, 1] + Subscript[x, 5] == 800 && > Subscript[x, 2] + Subscript[x, 6] == 750 && > Subscript[x, 3] + Subscript[x, 7] == 600 && > Subscript[x, 4] + Subscript[x, 8] == 500}, {Subscript[x, 1], > Subscript[x, 2], Subscript[x, 3], Subscript[x, 4], Subscript[x, 5], > Subscript[x, 6], Subscript[x, 7], Subscript[x, 8]}] >
- References:
- About linear programming
- From: Marcela Villa Marulanda <mavima10@gmail.com>
- About linear programming