Re: problem in solving inconsistent system of equations

*To*: mathgroup at smc.vnet.net*Subject*: [mg127623] Re: problem in solving inconsistent system of equations*From*: W Craig Carter <ccarter at MIT.EDU>*Date*: Wed, 8 Aug 2012 03:15:44 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*Delivered-to*: l-mathgroup@wolfram.com*Delivered-to*: mathgroup-newout@smc.vnet.net*Delivered-to*: mathgroup-newsend@smc.vnet.net*References*: <20120807070146.E18726764@smc.vnet.net>

Hello, Increasing the MaxModularPoints to 10^7 makes Reduce return false. SetSystemOptions["ReduceOptions" -> "MaxModularPoints" -> 10000000] Reduce[ a^2 + a + b*c + 1 == 0 && e^2 + f*g + 1 == 0 && k^2 + k + l*m + 1 == 0 && s^2 + t*u + 1 == 0 && 2*a*k + k + b*m + c*l + a + 1 == 0 && 2*a*s + s + b*u + c*t == 0 && 2*k*e + e + f*m + g*l == 0 && 2*e*s + f*u + g*t == 0 && e (-1 - k) - g l + c (f (-1 - k) + e l) + b (g k - e m) + a (-e - g l + f m) == 1, {a, b, c, e, f, g, k, l, m, s, t, u}, Modulus -> 37] (* False *) Using SetSystemOptions["ReduceOptions" -> "UseOldReduce" -> True] also gets a False for a return. Can you give an example of a solution? W Craig Carter Professor of Materials Science, MIT On Aug 7, , at Tue Aug 7, 12 @3:01 AM, awaisysf wrote: > Reduce[a^2 + a + b*c + 1 == 0 && e^2 + f*g + 1 == 0 && > k^2 + k + l*m + 1 == 0 && s^2 + t*u + 1 == 0 && > 2*a*k + k + b*m + c*l + a + 1 == 0 && 2*a*s + s + b*u + c*t == 0 && > 2*k*e + e + f*m + g*l == 0 && 2*e*s + f*u + g*t == 0 && > e (-1 - k) - g l + c (f (-1 - k) + e l) + b (g k - e m) + > a (-e - g l + f m) == 1, {a, b, c, e, f, g, k, l, m, s, t, u}, > Modulus -> 37] > > but when i solve this through Mathematica it gives this error > " > Reduce::munsp: Reduce was unable to solve the system. Increasing the value of SystemOption MaxModularPoints may help." > > actually there are many solution who satisfied this system of questions by the above mention command i need only one or first few solutions please help to modified this code . thanks >

**References**:**problem in solving inconsistent system of equations***From:*awaisysf <awaisysf@yahoo.com>