Re: Plotting a series of Roots
- To: mathgroup at smc.vnet.net
- Subject: [mg128876] Re: Plotting a series of Roots
- From: William Duhe <wjduhe at loyno.edu>
- Date: Sat, 1 Dec 2012 04:37:30 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
I want to make the second bit of code operate like the first:
First
s1[lambda_, t_] =
x[t] /. DSolve[{x'[t] == lambda, x[0] == 0}, x[t], t][[1]];
lambda t;
t1[lambda_, value_] = t /. Solve[s1[lambda, t] == value, t][[1]];
value/lambda;
s1[lambda, t1[lambda, value]];
value;
Plot[t1[lambda, 1], {lambda, .1, 1}, PlotRange -> Automatic]
Second
M = 10000;
g = 1;
A = 10;
a = 1/100;(*initial plot temp*)b = 12/10;(*final plot temp*)c =
10^-8;(*initial temp*)d = 0;(*initial \[Beta]*)m = 1;
s[\[Alpha]_?NumericQ, t_?NumericQ] :=
Module[{bb = (g/(2*\[Pi])^(3/2)*(m/T)^(3/2)*E^(-m/T))}, \[Beta][
t] /. NDSolve[{\[Beta]'[
T] == (3*\[Alpha]^2*M*T^(5/2))/(Sqrt[2*g]*
m^(9/2))*(bb^2 - \[Beta][T]^2), \[Beta][c] ==
d}, \[Beta], {T, a, b}, Method -> "BDF"][[1]]];
t1[\[Alpha]_?NumericQ, value_?NumericQ] =
t /. NSolve[s[\[Alpha], t] == value, t][[1]];
Plot[t1[\[Alpha], .9], {\[Alpha], .1, 1}, PlotRange -> Automatic]
But I can't seem to make it go!
- Follow-Ups:
- Re: Plotting a series of Roots
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: Plotting a series of Roots