torus connections in Riemannian sheet trajectories?
- To: mathgroup at smc.vnet.net
- Subject: [mg124383] torus connections in Riemannian sheet trajectories?
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Wed, 18 Jan 2012 05:56:43 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
This curve is a Beauville-Weierstrass solution:x^5+y^5+z^5=0; {1 + t^5, -1 + t^5, -(2 + 20 t^10 + 10 t^20)^(1/5)} which was Integrated by hand and a substitution used: t->r*Exp[i*t] with r =1 giving the real part as Cos[n*t]. What I want to do is see all 5 Riemannian sheets instead of just two. Mathematica: Clear[x, y, z, w, r, q0, p0] TubePlotFrenet[curve_List, {var_, min_, max_}, radius_, opts___] := Module[{tangent, unitTangent, normal, unitNormal, biNormal}, tangent = D[curve, t]; unitTangent = tangent/Sqrt[tangent.tangent]; normal = D[unitTangent, t]; unitNormal = normal/Sqrt[normal.normal]; biNormal = Cross[unitTangent, unitNormal]; ParametricPlot3D[ curve + radius Cos[s] unitNormal + radius Sin[s] biNormal // Evaluate, {var, min, max}, {s, 0, 2 \[Pi]}, opts]] x = Cos[t] + Cos[6*t]/6; y = Cos[t] - Cos[6*t]/6; z = -(2*Cos[t] + (10/21)*Cos[21*t] + (20/11)*Cos[11*t])^(1/5); w = {x, y, z}; w1 = {x, y, -z}; h = TubePlotFrenet[w, {t, -Pi, Pi}, 1/10, Axes -> None, Boxed -> False, ViewPoint -> {10, 0, 0}, PlotPoints -> {100, 16}, Mesh -> False, ColorFunction -> "Rainbow", PlotRange -> All] g = TubePlotFrenet[w1, {t, -Pi, Pi}, 1/10, Axes -> None, Boxed -> False, ViewPoint -> {10, 0, 0}, PlotPoints -> {64, 16}, Mesh -> False, ColorFunction -> "Rainbow", PlotRange -> All] gw = Show[{h, g}, PlotRange -> All]