Re: NDSolve and DAEs
- To: mathgroup at smc.vnet.net
- Subject: [mg124613] Re: NDSolve and DAEs
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 26 Jan 2012 03:30:58 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201201251204.HAA05991@smc.vnet.net>
eqns = { x1'[t] == x2[t], x2'[t] == -x3[t] - x2[t], x3'[t] == x2[t] x4[t], x4'[t] == -x3[t] x2[t]}; ics = {x1[0] == 0.5, x2[0] == 0, x3[0] == Sin[0.5], x4[0] == Cos[0.5]}; sol = NDSolve[Join[eqns, ics], {x1, x2, x3, x4}, {t, 0, 16}][[1]]; x3[0] x3[0] + x4[0] x4[0] == 1 /. sol True Plot[Evaluate[{ Tooltip[x1[t], "x1"], Tooltip[x2[t], "x2"], Tooltip[x3[t], "x3"], Tooltip[x4[t], "x4"]} /. sol], {t, 0, 16}] Bob Hanlon 2012/1/25 J. Jes=FAs Rico Melgoza <jerico at umich.mx>: > Hi everybody! > > I have the following DAE system: > > eqns = {x1'[t] == x2[t], x2'[t] == -x3[t] - x2[t], > x3'[t] == x2[t] x4[t], > x4'[t] == -x3[t] x2[t]} > with initial conditions > > ics = {x1[0] == 0.5, x2[0] == 0, x3[0] == Sin[0.5], > x4[0] == Cos[0.5]} > that must satisfy the following constraint > > x3[0]x3[0]+x4[0]x4[0]=1 > The interval of time is {t,0,16}. > > I do not know how to do it with NDSolve. > Can this be done? in some part of the documentation there is an example > where the enqs are linear but the same procedure applied to my problem > (nonlinear) wouldn't work. > > I will appreciate any help. > Thanks in advance. > > Best regards > Jesus Rico-Melgoza >
- References:
- NDSolve and DAEs
- From: J. Jesús Rico Melgoza <jerico@umich.mx>
- NDSolve and DAEs