Re: NDSolve and DAEs
- To: mathgroup at smc.vnet.net
- Subject: [mg124610] Re: NDSolve and DAEs
- From: "J. Jesús Rico Melgoza" <jerico at umich.mx>
- Date: Thu, 26 Jan 2012 03:29:55 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201201251204.HAA05991@smc.vnet.net> <CAEtRDSdw8yE7j9opnLN7ue1i9N90yBoSJh6x2pzyK9JC=i7CLg@mail.gmail.com>
Thanks Bob! El 25/01/2012, a las 07:55, Bob Hanlon escribi=F3: > eqns = { > x1'[t] == x2[t], > x2'[t] == -x3[t] - x2[t], > x3'[t] == x2[t] x4[t], > x4'[t] == -x3[t] x2[t]}; > > ics = {x1[0] == 0.5, x2[0] == 0, > x3[0] == Sin[0.5], x4[0] == Cos[0.5]}; > > sol = NDSolve[Join[eqns, ics], {x1, x2, x3, x4}, {t, 0, 16}][[1]]; > > x3[0] x3[0] + x4[0] x4[0] == 1 /. sol > > True > > Plot[Evaluate[{ > Tooltip[x1[t], "x1"], > Tooltip[x2[t], "x2"], > Tooltip[x3[t], "x3"], > Tooltip[x4[t], "x4"]} /. sol], > {t, 0, 16}] > > > Bob Hanlon > > > 2012/1/25 J. Jes=FAs Rico Melgoza <jerico at umich.mx>: >> Hi everybody! >> >> I have the following DAE system: >> >> eqns = {x1'[t] == x2[t], x2'[t] == -x3[t] - x2[t], >> x3'[t] == x2[t] x4[t], >> x4'[t] == -x3[t] x2[t]} >> with initial conditions >> >> ics = {x1[0] == 0.5, x2[0] == 0, x3[0] == Sin[0.5], >> x4[0] == Cos[0.5]} >> that must satisfy the following constraint >> >> x3[0]x3[0]+x4[0]x4[0]=1 >> The interval of time is {t,0,16}. >> >> I do not know how to do it with NDSolve. >> Can this be done? in some part of the documentation there is an example >> where the enqs are linear but the same procedure applied to my problem >> (nonlinear) wouldn't work. >> >> I will appreciate any help. >> Thanks in advance. >> >> Best regards >> Jesus Rico-Melgoza >>
- References:
- NDSolve and DAEs
- From: J. Jesús Rico Melgoza <jerico@umich.mx>
- NDSolve and DAEs