Re: polarplot with arrow bearing tickmarks

*To*: mathgroup at smc.vnet.net*Subject*: [mg127253] Re: polarplot with arrow bearing tickmarks*From*: "djmpark" <djmpark at comcast.net>*Date*: Wed, 11 Jul 2012 18:21:11 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*Delivered-to*: mathgroup-newout@smc.vnet.net*Delivered-to*: mathgroup-newsend@smc.vnet.net*References*: <jt8vhd$k3k$1@smc.vnet.net> <12016576.18407.1341987727388.JavaMail.root@m06>

I still can't figure out what the original poster actually wants. Nevertheless, Elkins' construction could be done more easily in Presentations using the free standing XTickLine and a postfix rotation. You just draw one thing after another. << Presentations` Draw2D[ {(* Polar Curve *) {Red, PolarDraw[ 1/(10*Sin[t]^4 + -1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}]}, (* Tickline with Arrow *) {XTickLine[{0, 10, 0}, {0, 10}, {0, 10, 1}, 1, XLabTickSpecs -> {0.04, 0.`}], Arrowheads[0.04], Arrow[{{0, 0}, {10, 0}}]} // RotateOp[30 Degree, {0, 0}]}, Frame -> True, PlotRange -> All ] David Park djmpark at comcast.net http://home.comcast.net/~djmpark/index.html From: Alexander Elkins [mailto:alexander_elkins at hotmail.com] (* Some clues to drawing tick marks can be had by examining the output of InputForm[FullGraphics[graphics]] and FullAxes[graphics]. *) (* (1) Drawback with this method is Scaled[0.958] for the Inset element which is based on getting the commented-out Circle[{0,0},10]'s to align by guessing at the value 0.958 *) PolarPlot[ 1/(10*Sin[t]^4 + -1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, PlotRange -> All, PlotStyle -> {{Red, AbsoluteThickness[4]}}, Ticks -> None, Epilog -> {(*Circle[{0,0},10],*) Inset[Graphics[{(*Circle[{0,0},10],*)Arrowheads[0.04*2], Arrow[{{0, 0 }, {10, 0}}]}, Axes -> {True, False}, AspectRatio -> 2, PlotRange -> {{0, 10}, {-10, 10}}], {0, 0}, {0, 0}, Scaled[0.958], {Cos[#], Sin[#]} &[30 =B0]]}] (* (2) Here is a roll your own tick marks method which matches closely to the output of (1) above *) tl = 0.05; PolarPlot[ 1/(10*Sin[t]^4 + -1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, PlotRange -> All, PlotStyle -> {{Red, AbsoluteThickness[4]}}, Ticks -> None, Epilog -> GeometricTransformation[{Arrow[{{0, 0}, {10, 0}}], Line[{{#, 0}, {#, Piecewise[{{4 tl, # == 0}, {3 tl, # == 1}}, 2 tl] &[Mod[#, 2]]}} & /@ FindDivisions[{0, 10}, 20]], Text[Style[#, FontFamily -> "Times"], {#, -1/8}, {0, 1}] & /@ Range[0, 10, 2]}, RotationTransform[30 =B0]]] Hope this helps... "van zano" <L.Balzano at gmail.com> wrote in message news:jt8vhd$k3k$1 at smc.vnet.net... > dear all, > I would like to decorate this polarplot with an arrow that starts at > the origin and moves outwards at a certain angle (phi). it would be great if the arrow could also have tickmarks. > does anyone have a solution? > > PolarPlot[ > 1/(10*Sin[t]^4 + -1*Cos[t]^2*Sin[t]^2 + 0.1*Cos[t]^4 + > 5*Cos[t]^2*Sin[t]^2), {t, 0, 2*Pi}, > PlotRange -> All, > PlotStyle -> {{Red, AbsoluteThickness[4]}}] > > thanks! L >