Re: different results
- To: mathgroup at smc.vnet.net
- Subject: [mg125328] Re: different results
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Wed, 7 Mar 2012 05:35:00 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201203050742.CAA29927@smc.vnet.net> <jj4qvt$ij8$1@smc.vnet.net>
Bob Hanlon got the definitive result. Here is a 7th root version that gets Bob Hanlon's inverse root and removes most of the zeros: f[x_] = Product[1 + x^(8*i - 1), {i, 1, Infinity}] g[x_] = Product[(1 - x^(8*i - 1)), {i, 1, Infinity}] h[x_] = (1 + 2*f[x])/(-1 + g[x]) a = Table[SeriesCoefficient[ Series[x*h[x^(1/7)], {x, 0, 50}], n], {n, 0, 50}] ListPlot[a] {-3, -2, 0, 0, 0, 0, 0, 0, 0, -3, 5, -21, 16, -20, -6, 13, -4, 3, -21, 53, -205, 294, -481, 583, -633, 519, -164, -334, 765, -1901, 3707, -7263, 12241, -18113, 23208, -25644, 23554, -15343, -4280, 38143, -94739, 184290, -319135, 503453, -724127, 940484, -1084478, 1050440, -714961, -97011, 1629268} On Mar 6, 3:04 am, Bob Hanlon <hanlonr... at gmail.com> wrote: > f[x_] = Product[1 + x^(8*i - 1), {i, 1, Infinity}]; > g[x_] = Product[(1 - x^(8*i - 1)), {i, 1, Infinity}]; > h[x_] = (1 + 2*f[x])/(-1 + g[x]); > > Series[h[x], {x, 0, 10}] // Normal > > -2 - 3/x^7 + 3*x - 3*x^8 > > The "first" coefficient for h[x] is for the x^-7 term. If you want all > of the coefficients you need to look at x^7*h[x] > > CoefficientList[Series[x^7*h[x], {x, 0, 107}], x] > > {-3, 0, 0, 0, 0, 0, 0, -2, 3, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, -4, 3, \ > 0, 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, -4, 2, 3, 0, 0, 0, 0, 0, -3, -9, -3, \ > 0, 0, 0, 0, -4, 1, 5, 3, 0, 0, 0, 0, 1, -15, -9, -3, 0, 0, 0, -4, 0, 6, 5, 3, \ > 0, 0, 0, 5, -20, -21, -12, -3, 0, 0, -4, -1, 16, 11, 11, 3, 0, 0, 9, -20, \ > -40, -36, -18, -3, 0, -4, -6, 31, 27, 25, 14, 3, 0, 13, -15, -61} > > Bob Hanlon > > > > > > > > On Mon, Mar 5, 2012 at 2:42 AM, Roger Bagula <roger.bag... at gmail.com> wrote: > > Two versions of the code: > > Table[SeriesCoefficient[ > > Series[(1 + 2*Product[1 + x^(8*i - 1), {i, 1, Infinity}])/(-1 + > > Product[(1 - x^(8*i - 1)), {i, 1, Infinity}]), {x, 0, 100}], > > n], {n, 0, 100}] > > > f[x_] = Product[1 + x^(8*i - 1), {i, 1, Infinity}] > > g[x_] = Product[(1 - x^(8*i - 1)), {i, 1, Infinity}] > > h[x_] = (1 + 2*f[x])/(-1 + g[x]) A 7th root result that uses Bob /Hanlon's solution: f[x_] = Product[1 + x^(8*i - 1), {i, 1, Infinity}] g[x_] = Product[(1 - x^(8*i - 1)), {i, 1, Infinity}] h[x_] = (1 + 2*f[x])/(-1 + g[x]) a = Table[SeriesCoefficient[ Series[x*h[x^(1/7)], {x, 0, 50}], n], {n, 0, 50}] ListPlot[a] > > a = Table[SeriesCoefficient[ > > Series[h[x], {x, 0, 100}], n], {n, 0, 100}] > > > Discussion at:https://oeis.org/draft/A208150 > > I get as I submitted: > > DATA -2, 3, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, -4, 3, 0, 0, 0, > > 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, -4, 2, 3, 0, 0, 0, 0, 0, -3, -9, -3, > > 0, 0, 0, 0, -4, 1, 5, 3, 0, 0, 0, 0, 1, -15, -9, -3, 0, 0, 0, -4, 0, > > 6, 5, 3, 0, 0 > > > An OEIS editor gets: > > [-3, 0, 0, 0, 0, 0, 0, -2, 3, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, > > -4, 3, 0, 0, 0, ...] > > Roger Bagula
- References:
- different results
- From: Roger Bagula <roger.bagula@gmail.com>
- different results