calculation error in series
- To: mathgroup at smc.vnet.net
- Subject: [mg125641] calculation error in series
- From: Maurice Coderre <mauricecoderre at gmail.com>
- Date: Sat, 24 Mar 2012 02:02:57 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
In[52]:= \!\( \*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(\[Infinity]\)]\( FractionBox[\(1\), SuperscriptBox[\(2\), \((n + 1)\)]] \( \*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(n\)]\(( SuperscriptBox[\((\(-1\))\), \(k\)] \((\(( \*FractionBox[\(n!\), \(\(\((n - k)\)!\) \(k!\)\)])\) \*SuperscriptBox[\(E\), \(- \*FractionBox[\(k\), \(2\)]\)]\ )\) Cos[14.134725141734695 k])\)\)\) \) Out[52]= 0.730559318177 + 5.55111512313*10^-17 I In[53]:= \!\( \*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(\[Infinity]\)]\( FractionBox[\(1\), SuperscriptBox[\(2\), \((n + 1)\)]] \( \*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(n\)]\(( SuperscriptBox[\((\(-1\))\), \(k\)] \((\(( \*FractionBox[\(n!\), \(\(\((n - k)\)!\) \(k!\)\)])\) \*SuperscriptBox[\(E\), \(- \*FractionBox[\(k\), \(2\)]\)]\ )\))\)\)\)\) Out[53]= Sqrt[E]/(1 + Sqrt[E]) Why does the insertion of a purely real trigonometric function in a purely real infinit series, as shown above, give a complex result? Is it the result of an accumulated imprecision in the numerical evaluation?
- Follow-Ups:
- Re: calculation error in series
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: calculation error in series