Re: Euclidean distance of all pairwise combinations (redundants)

• To: mathgroup at smc.vnet.net
• Subject: [mg128667] Re: Euclidean distance of all pairwise combinations (redundants)
• From: Sseziwa Mukasa <mukasa at gmail.com>
• Date: Thu, 15 Nov 2012 03:58:15 -0500 (EST)
• Delivered-to: l-mathgroup@mail-archive0.wolfram.com
• Delivered-to: l-mathgroup@wolfram.com
• Delivered-to: mathgroup-newout@smc.vnet.net
• Delivered-to: mathgroup-newsend@smc.vnet.net
• References: <20121114062906.D261769B8@smc.vnet.net>

```Outer[EuclideanDistance[#,#]&,list,list]

On Nov 14, 2012, at 1:29 AM, Jesse Pisel <jessepisel at gmail.com> wrote:

> I have been having a tough time trying to figure out how to include all red undant pairwise combinations in my results for the euclidean distance between a set of points. I have a set of points with xy coordinates and want the euclidean distance between each point including the point and itself. So if my points in xy space are list = {{1, 1}, {2, 2}, {3, 3}} for example, I want the distance from {1, 1} to {1, 1}, {1, 1} to {2, 2}, and {2, 2} to {3, 3} etc. for each point for a total of 9 distances all together. The Euclidean Distance function removes the redundant distances that I want retained in the results. I have been using this code just to play with data but would like to be able to expand up to 500+ points:
>
> list = {{1, 1}, {2, 2}, {3, 3}}
> EuclideanDistance @@@ Subsets[list, {2}]
>
> Any ideas on how to get the euclidean distance between all the points including redundants and self references?
>
>

```

• Prev by Date: Re: Relational operators on intervals: bug?
• Next by Date: Re: Euclidean distance of all pairwise combinations (redundants)
• Previous by thread: Re: Euclidean distance of all pairwise combinations (redundants)
• Next by thread: Re: Euclidean distance of all pairwise combinations (redundants)