Re: simultaneous equation
- To: mathgroup at smc.vnet.net
- Subject: [mg128756] Re: simultaneous equation
- From: "Trichy V. Krishnan" <biztvk at nus.edu.sg>
- Date: Fri, 23 Nov 2012 03:29:34 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <4C20497A.6030205@gmail.com>
Thanks Bob. Very helpful! With regards trichy -----Original Message----- From: Bob Hanlon [mailto:hanlonr357 at gmail.com] Sent: Thursday, November 22, 2012 11:44 PM To: Trichy V. Krishnan Cc: mathgroup at smc.vnet.net Subject: [mg128756] Re: simultaneous equation Either Rationalize the results or input exact expressions (i.e., Rationalize input). x1 = 0.5 + (1/(4 t1)) (rsm - rsk); x2 = 0.5 + (1/(4 t2)) (rLm - rLk); x3 = 0.5 + (1/4) (rLk - n rsk); x4 = 0.5 + (1/4) (rLm - n rsm); ssk = a b x1 + (1 - a) g x3; sLk = a (1 - b) x2 + (1 - a) g (1 - x3); ssm = a b (1 - x1) + (1 - a) (1 - g) x4; sLm = a (1 - b) (1 - x2) + (1 - a) (1 - g) (1 - x4); Pik = ssk rsk + sLk rLk; Pim = ssm rsm + sLm rLm; Pidsm = D[Pim, rsm]; PidLm = D[Pim, rLm]; sol1 = Solve[Pidsm == 0 && PidLm == 0, {rsm, rLm}][[1]] // Rationalize // Simplify {rsm -> -(1/ t12 (-2 (-1 + g) t1 + a (2 (-1 + g) t1 + b (rsk + 2 t1))) ((-1 + g) t2 + a (-1 + b + t2 - g t2)) - (-1 + a) (-1 + g) (1 + n) (-2 (-1 + g) t2 + a (rLk - b rLk + 2 (-b + g) t2)))/(16 t2 (-(1/ 16) (-1 + a)^2 (-1 + g)^2 (1 + n)^2 - 1/(4 t1 t2)(-(-1 + g) n t1 + a (b + (-1 + g) n t1)) ((-1 + g) t2 + a (-1 + b + t2 - g t2)))), rLm -> (-2 (-1 + g)^2 (1 + 3 n) t1 t2 + a (-1 + g) ((4 (-1 + g) t1 + b (4 + rsk + 2 t1)) t2 + n (-2 (-1 + b) rLk t1 + (b rsk - 8 t1 - 2 b t1 + 12 g t1) t2)) + a^2 (2 b^2 (rLk + 2 t2) + b (2 rLk (-1 + (-1 + g) n t1) + (rsk + n rsk + 2 t1 - 2 n t1 - g (4 + rsk + n rsk + 2 t1 - 2 n t1)) t2) - 2 (-1 + g) t1 ((-1 + g) t2 + n (rLk - t2 + 3 g t2))))/((-1 + g)^2 (-1 + n)^2 t1 t2 - 2 a (-1 + g) ((-1 + g) n^2 t1 t2 - (2 b + t1 - g t1) t2 + 2 n t1 (-1 + b + t2 - g t2)) + a^2 (4 b^2 + 4 b (-1 + (-1 + g) n t1 + t2 - g t2) + (-1 + g) t1 ((-1 + g) t2 + (-1 + g) n^2 t2 - 2 n (2 + (-1 + g) t2))))} x1 = 1/2 + (1/(4 t1)) (rsm - rsk); x2 = 1/2 + (1/(4 t2)) (rLm - rLk); x3 = 1/2 + (1/4) (rLk - n rsk); x4 = 1/2 + (1/4) (rLm - n rsm); ssk = a b x1 + (1 - a) g x3; sLk = a (1 - b) x2 + (1 - a) g (1 - x3); ssm = a b (1 - x1) + (1 - a) (1 - g) x4; sLm = a (1 - b) (1 - x2) + (1 - a) (1 - g) (1 - x4); Pik = ssk rsk + sLk rLk; Pim = ssm rsm + sLm rLm; Pidsm = D[Pim, rsm]; PidLm = D[Pim, rLm]; sol2 = Solve[Pidsm == 0 && PidLm == 0, {rsm, rLm}][[1]] // Simplify; ({rsm, rLm} /. sol1) == ({rsm, rLm} /. sol2) True Bob Hanlon On Thu, Nov 22, 2012 at 4:33 AM, Trichy V. Krishnan <biztvk at nus.edu.sg> wrote: > Hi: > > When I solve a simultaneous equation, the output looks as follows. How do I remove those ?1.? and the annoying wiggles in the superscript position in so many places. > > With regards > > trichy > > Here is the whole thing. It's a small program... When I ran it anew, the superscript-wiggles are gone but the "1." persists. Thanks for the help. > trichy > > In[1]: > x1 = 0.5 + (1/(4 t1)) (rsm - rsk); > x2 = 0.5 + (1/(4 t2)) (rLm - rLk); > x3 = 0.5 + (1/4) (rLk - n rsk); > x4 = 0.5 + (1/4) (rLm - n rsm); > ssk = a b x1 + (1 - a) g x3; > sLk = a (1 - b) x2 + (1 - a) g (1 - x3); ssm = a b (1 - x1) + (1 - a) > (1 - g) x4; sLm = a (1 - b) (1 - x2) + (1 - a) (1 - g) (1 - x4); Pik = > ssk rsk + sLk rLk; Pim = ssm rsm + sLm rLm; Pidsm = D[Pim, rsm]; PidLm > = D[Pim, rLm]; Solve[Pidsm == 0 && PidLm == 0, {rsm, rLm}] > > Out[1]: > {{rsm -> -((0.5 a b + 0.5 (1. - 1. a) (1. - 1. g) + (0.25 a b rsk)/ > t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/ > t2) - 1. (0.25 (1. - 1. a) (1. - 1. g) + > 0.25 (1. - 1. a) (1. - 1. g) n) (0.5 a (1. - 1. b) + > 0.5 (1. - 1. a) (1. - 1. g) + (0.25 a (1. - 1. b) rLk)/ > t2))/(-1. (0.25 (1. - 1. a) (1. - 1. g) + > 0.25 (1. - 1. a) (1. - 1. g) n)^2 + (-0.5 (1. - 1. a) (1. - > 1. g) n - (0.5 a b)/t1) (-0.5 (1. - 1. a) (1. - 1. g) - ( > 0.5 a (1. - 1. b))/t2)), > rLm -> (1. (0.25 (1. - 1. a) (1. - 1. g) + > 0.25 (1. - 1. a) (1. - 1. g) n) ((0.5 a b + > 0.5 (1. - 1. a) (1. - 1. g) + (0.25 a b rsk)/ > t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/ > t2) - 1. (0.25 (1. - 1. a) (1. - 1. g) + > 0.25 (1. - 1. a) (1. - 1. g) n) (0.5 a (1. - 1. b) + > 0.5 (1. - 1. a) (1. - 1. g) + (0.25 a (1. - 1. b) rLk)/ > t2)))/((-1. (0.25 (1. - 1. a) (1. - 1. g) + > 0.25 (1. - 1. a) (1. - 1. g) n)^2 + (-0.5 (1. - > 1. a) (1. - 1. g) n - (0.5 a b)/ > t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/ > t2)) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/ > t2)) - (0.5 a (1. - 1. b) + 0.5 (1. - 1. a) (1. - 1. g) + ( > 0.25 a (1. - 1. b) rLk)/t2)/(-0.5 (1. - 1. a) (1. - 1. g) - ( > 0.5 a (1. - 1. b))/t2)}}