Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2012

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: simultaneous equation

  • To: mathgroup at smc.vnet.net
  • Subject: [mg128766] Re: simultaneous equation
  • From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
  • Date: Sat, 24 Nov 2012 02:27:26 -0500 (EST)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-newout@smc.vnet.net
  • Delivered-to: mathgroup-newsend@smc.vnet.net

Hi:

When I solve a simultaneous equation, the output looks as follows. How do I remove those ?1.? and the annoying wiggles in the superscript position in so many places.

With regards

trichy

Here is the whole thing. It's a small program... When I ran it anew, the superscript-wiggles are gone but the "1." persists. Thanks for the help.
trichy

In[1]:
x1 = 0.5 + (1/(4 t1)) (rsm - rsk);
x2 = 0.5 + (1/(4 t2)) (rLm - rLk);
x3 = 0.5 + (1/4) (rLk - n rsk);
x4 = 0.5 + (1/4) (rLm - n rsm);
ssk = a b x1 + (1 - a) g x3;
sLk = a (1 - b) x2 + (1 - a) g (1 - x3);
ssm = a b (1 - x1) + (1 - a) (1 - g) x4;
sLm = a (1 - b) (1 - x2) + (1 - a) (1 - g) (1 - x4);
Pik = ssk rsk + sLk rLk;
Pim = ssm rsm + sLm rLm;
Pidsm = D[Pim, rsm]; PidLm = D[Pim, rLm];
Solve[Pidsm == 0 && PidLm == 0, {rsm, rLm}]

Out[1]:
{{rsm -> -((0.5 a b + 0.5 (1. - 1. a) (1. - 1. g) + (0.25 a b rsk)/
          t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/
          t2) - 1. (0.25 (1. - 1. a) (1. - 1. g) +
          0.25 (1. - 1. a) (1. - 1. g) n) (0.5 a (1. - 1. b) +
          0.5 (1. - 1. a) (1. - 1. g) + (0.25 a (1. - 1. b) rLk)/
          t2))/(-1. (0.25 (1. - 1. a) (1. - 1. g) +
         0.25 (1. - 1. a) (1. - 1. g) n)^2 + (-0.5 (1. - 1. a) (1. -
            1. g) n - (0.5 a b)/t1) (-0.5 (1. - 1. a) (1. - 1. g) - (
         0.5 a (1. - 1. b))/t2)),
  rLm -> (1. (0.25 (1. - 1. a) (1. - 1. g) +
         0.25 (1. - 1. a) (1. - 1. g) n) ((0.5 a b +
            0.5 (1. - 1. a) (1. - 1. g) + (0.25 a b rsk)/
            t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/
            t2) - 1. (0.25 (1. - 1. a) (1. - 1. g) +
            0.25 (1. - 1. a) (1. - 1. g) n) (0.5 a (1. - 1. b) +
            0.5 (1. - 1. a) (1. - 1. g) + (0.25 a (1. - 1. b) rLk)/
            t2)))/((-1. (0.25 (1. - 1. a) (1. - 1. g) +
            0.25 (1. - 1. a) (1. - 1. g) n)^2 + (-0.5 (1. -
               1. a) (1. - 1. g) n - (0.5 a b)/
            t1) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/
            t2)) (-0.5 (1. - 1. a) (1. - 1. g) - (0.5 a (1. - 1. b))/
         t2)) - (0.5 a (1. - 1. b) + 0.5 (1. - 1. a) (1. - 1. g) + (
     0.25 a (1. - 1. b) rLk)/t2)/(-0.5 (1. - 1. a) (1. - 1. g) - (
     0.5 a (1. - 1. b))/t2)}}

Hi, is this better?

x1 = 1/2 + (1/(4 t1)) (rsm - rsk);
x2 = 1/2 + (1/(4 t2)) (rLm - rLk);
x3 = 1/2 + (1/4) (rLk - n rsk);
x4 = 1/2 + (1/4) (rLm - n rsm);
ssk = a b x1 + (1 - a) g x3;
sLk = a (1 - b) x2 + (1 - a) g (1 - x3);
ssm = a b (1 - x1) + (1 - a) (1 - g) x4;
sLm = a (1 - b) (1 - x2) + (1 - a) (1 - g) (1 - x4);
Pik = ssk rsk + sLk rLk;
Pim = ssm rsm + sLm rLm;
Pidsm = D[Pim, rsm]; PidLm = D[Pim, rLm];
Solve[Pidsm == 0 && PidLm == 0, {rsm, rLm}]

{{rsm -> -(((a b)/2 + 1/2 (1 - a) (1 - g) + (a b rsk)/(
          4 t1)) (-(1/2) (1 - a) (1 - g) - (a (1 - b))/(
          2 t2)) - (1/4 (1 - a) (1 - g) +
          1/4 (1 - a) (1 - g) n) (1/2 a (1 - b) +
          1/2 (1 - a) (1 - g) + (a (1 - b) rLk)/(
          4 t2)))/(-(1/4 (1 - a) (1 - g) +
          1/4 (1 - a) (1 - g) n)^2 + (-(1/2) (1 - a) (1 - g) n - (
          a b)/(2 t1)) (-(1/2) (1 - a) (1 - g) - (a (1 - b))/(2 t2))),
   rLm -> ((1/4 (1 - a) (1 - g) +
         1/4 (1 - a) (1 - g) n) (((a b)/2 + 1/2 (1 - a) (1 - g) + (
            a b rsk)/(4 t1)) (-(1/2) (1 - a) (1 - g) - (a (1 - b))/(
            2 t2)) - (1/4 (1 - a) (1 - g) +
            1/4 (1 - a) (1 - g) n) (1/2 a (1 - b) +
            1/2 (1 - a) (1 - g) + (a (1 - b) rLk)/(
            4 t2))))/((-(1/4 (1 - a) (1 - g) +
            1/4 (1 - a) (1 - g) n)^2 + (-(1/2) (1 - a) (1 - g) n - (
            a b)/(2 t1)) (-(1/2) (1 - a) (1 - g) - (a (1 - b))/(
            2 t2))) (-(1/2) (1 - a) (1 - g) - (a (1 - b))/(
         2 t2))) + (-a rLk + a b rLk - 2 t2 + 2 a b t2 + 2 g t2 -
     2 a g t2)/(2 (-a + a b - t2 + a t2 + g t2 - a g t2))}}

Have fun, Alexei




Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG

Office phone :  +352-2454-2566
Office fax:       +352-2454-3566
mobile phone:  +49 151 52 40 66 44

e-mail: alexei.boulbitch at iee.lu






  • Prev by Date: Re: Integer Length Count
  • Next by Date: Re: Integer Length Count
  • Previous by thread: Re: simultaneous equation
  • Next by thread: Re: Novice problem in mathematica syntax : Function of a function