Re: Intersection over an index
- To: mathgroup at smc.vnet.net
- Subject: [mg128415] Re: Intersection over an index
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 18 Oct 2012 02:34:26 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121017001211.0C48B685E@smc.vnet.net>
intersectM[m1_?MatrixQ, m2_?MatrixQ] := Select[m2, MemberQ[m1, #] &]; intersectEV[m : {__?MatrixQ}] := Module[ {ev = Eigenvectors /@ m}, Fold[intersectM[#1, #2] &, First[ev], Rest[ev]]] A[1] = {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}; Eigenvectors[A[1]] {{1, 1, 1}, {-I, 0, 1}, {I, 0, 1}} A[2] = {{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}; Eigenvectors[A[2]] {{-I, 0, 1}, {I, 0, 1}, {0, 1, 1}} A[3] = {{-2, -1, -1}, {0, -1, 0}, {1, -1, -2}}; Eigenvectors[A[3]] {{I, 0, 1}, {-I, 0, 1}, {0, -1, 1}} A[4] = {{-2, -1, 1}, {0, -1, 0}, {1, -1, -2}}; Eigenvectors[A[4]] {{-1, 0, 1}, {1, 0, 1}, {0, 0, 0}} The first three have common eigenvectors intersectEV[Table[A[k], {k, 3}]] {{I, 0, 1}, {-I, 0, 1}} Adding the fourth does not intersectEV[Table[A[k], {k, 4}]] {} Bob Hanlon On Tue, Oct 16, 2012 at 8:12 PM, Geoffrey Eisenbarth <geoffrey.eisenbarth at gmail.com> wrote: > Given a set of n many matrices A[k], I'd like to find any common eigenvectors. Using > > Intersection[Table[Eigenvalues[A[k]],{k,1,n}] doesn't seem to work. For instance: > > A[1] = {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}; > A[2] = {{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}; > Intersection[Table[A[p], {p, 1, 2}]] > > gives me > {{{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}, {{-1, -3, 1}, {0, -3, > 0}, {-1, -1, -1}}} > > > Any suggestions? >
- References:
- Intersection over an index
- From: Geoffrey Eisenbarth <geoffrey.eisenbarth@gmail.com>
- Intersection over an index