Intersection over an index
- To: mathgroup at smc.vnet.net
- Subject: [mg128408] Intersection over an index
- From: Geoffrey Eisenbarth <geoffrey.eisenbarth at gmail.com>
- Date: Tue, 16 Oct 2012 20:12:11 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
Given a set of n many matrices A[k], I'd like to find any common eigenvectors. Using Intersection[Table[Eigenvalues[A[k]],{k,1,n}] doesn't seem to work. For instance: A[1] = {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}; A[2] = {{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}; Intersection[Table[A[p], {p, 1, 2}]] gives me {{{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}, {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}} Any suggestions?
- Follow-Ups:
- Re: Intersection over an index
- From: Geoffrey Eisenbarth <geoffrey.eisenbarth@gmail.com>
- Re: Intersection over an index
- From: Sseziwa Mukasa <mukasa@gmail.com>
- Re: Intersection over an index
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: Intersection over an index