Re: Intersection over an index
- To: mathgroup at smc.vnet.net
- Subject: [mg128424] Re: Intersection over an index
- From: Geoffrey Eisenbarth <geoffrey.eisenbarth at gmail.com>
- Date: Thu, 18 Oct 2012 02:37:27 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121017001211.0C48B685E@smc.vnet.net>
Thanks for your response! I believe using Apply[] worked better for me, but I appreciate your response and this community. On Tue, Oct 16, 2012 at 10:01 PM, Bob Hanlon <hanlonr357 at gmail.com> wrote: > intersectM[m1_?MatrixQ, m2_?MatrixQ] := > Select[m2, MemberQ[m1, #] &]; > > intersectEV[m : {__?MatrixQ}] := Module[ > {ev = Eigenvectors /@ m}, > Fold[intersectM[#1, #2] &, First[ev], Rest[ev]]] > > A[1] = {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}; > > Eigenvectors[A[1]] > > {{1, 1, 1}, {-I, 0, 1}, {I, 0, 1}} > > A[2] = {{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}; > > Eigenvectors[A[2]] > > {{-I, 0, 1}, {I, 0, 1}, {0, 1, 1}} > > A[3] = {{-2, -1, -1}, {0, -1, 0}, {1, -1, -2}}; > > Eigenvectors[A[3]] > > {{I, 0, 1}, {-I, 0, 1}, {0, -1, 1}} > > A[4] = {{-2, -1, 1}, {0, -1, 0}, {1, -1, -2}}; > > Eigenvectors[A[4]] > > {{-1, 0, 1}, {1, 0, 1}, {0, 0, 0}} > > The first three have common eigenvectors > > intersectEV[Table[A[k], {k, 3}]] > > {{I, 0, 1}, {-I, 0, 1}} > > Adding the fourth does not > > intersectEV[Table[A[k], {k, 4}]] > > {} > > > Bob Hanlon > > > On Tue, Oct 16, 2012 at 8:12 PM, Geoffrey Eisenbarth > <geoffrey.eisenbarth at gmail.com> wrote: > > Given a set of n many matrices A[k], I'd like to find any common > eigenvectors. Using > > > > Intersection[Table[Eigenvalues[A[k]],{k,1,n}] doesn't seem to work. For > instance: > > > > A[1] = {{-1, -3, 1}, {0, -3, 0}, {-1, -1, -1}}; > > A[2] = {{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}; > > Intersection[Table[A[p], {p, 1, 2}]] > > > > gives me > > {{{-2, -1, 1}, {0, -1, 0}, {-1, 1, -2}}, {{-1, -3, 1}, {0, -3, > > 0}, {-1, -1, -1}}} > > > > > > Any suggestions? > > >
- References:
- Intersection over an index
- From: Geoffrey Eisenbarth <geoffrey.eisenbarth@gmail.com>
- Intersection over an index