Re: How to make fitting code using NDSolve?
- To: mathgroup at smc.vnet.net
- Subject: [mg128433] Re: How to make fitting code using NDSolve?
- From: long.he.dragon at gmail.com
- Date: Fri, 19 Oct 2012 02:42:03 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <k0sroq$jn4$1@smc.vnet.net>
Hi Yeom I am facing some similar problem as yours. Do you have any solution for your original post ? Thanks for sharing Long On Monday, August 20, 2012 2:16:26 AM UTC-6, JYeom wrote: > Hello, > > I am trying to fit some basic data to a partial differential equation- here are the data points: > > > > data = { > > {2.113, 2.915*^-7}, {2.256, 2.758*^-7}, {2.303, 2.567*^-7}, {2.493, > > 2.343*^-7}, {2.635, 2.085*^-7}, {2.825, 1.838*^-7}, {3.015, > > 1.614*^-7}, {3.205, 1.412*^-7}, {3.538, 1.199*^-7}, {3.775, > > 1.03*^-7}, {4.108, 8.173*^-8}, {4.487, 6.266*^-8}, {4.915, > > 4.695*^-8}, {5.295, 3.349*^-8}, {5.912, 2.34*^-8}, {6.672, > > 1.554*^-8}, {7.527, 7.692*^-9}, {8.524, 5.448*^-9}, {9.426, > > 4.326*^-9}, {10.23, 3.205*^-9}, {10.99, > > 2.083*^-9}, {11.99, -1.608*^-10} > > } > > > > And there are four parameters to fit in our fitting equation: > > > > model[ka_?NumberQ, kr_?NumberQ, kd_?NumberQ, > > kb_?NumberQ] := (model[ka, kr, kd, kb] = > > First[Subscript[Dye, 0] /. NDSolve[{ > > Derivative[1][Subscript[Dye, 0]][ > > t] ==\[VeryThinSpace]-ka Subscript[Dye, 0][t] + > > kr Subscript[Dyes, 0][t], Subscript[Dye, 0][0] == 1.22 10^-6, > > Derivative[1][Subscript[Dye, 1]][ > > t] == -ka Subscript[Dye, 1][t] + kr Subscript[Dyes, 1][t], > > Subscript[Dye, 1][0] == 0, > > > > Derivative[1][Subscript[Dyes, 0]][t] == > > ka Subscript[Dye, 0][t] - kr Subscript[Dyes, 0][t] - > > kd Subscript[CI, 0][t] Subscript[Dyes, 0][t] - > > kd /2 * Subscript[CI, 1][t] Subscript[Dyes, 1][t], > > Subscript[Dyes, 0][0] == 0, > > Derivative[1][Subscript[Dyes, 1]][t] == > > ka Subscript[Dye, 1][t] - > > kd Subscript[CI, 1][t] Subscript[Dyes, 0][t] - > > kr Subscript[Dyes, 1][t] - > > kd Subscript[CI, 0][t] Subscript[Dyes, 1][t], > > Subscript[Dyes, 1][0] == 0, > > > > Derivative[1][Subscript[CI, 0]][ > > t] == -kd Subscript[CI, 0][t] Subscript[Dyes, 0][t] - > > kd/2* Subscript[CI, 1][t] Subscript[Dyes, 1][t] - > > kb Subscript[CI, 0][t] Subscript[HDye, 0][t] - > > kb/2* Subscript[CI, 1][t] Subscript[HDye, 1][t], > > Subscript[CI, 0][0] == 3.18 10^-3, > > Derivative[1][Subscript[CI, 1]][ > > t] == -kd Subscript[CI, 1][t] Subscript[Dyes, 0][t] - > > kd/2* Subscript[CI, 0][t] Subscript[Dyes, 1][t] - > > kb Subscript[CI, 1][t] Subscript[HDye, 0][t] - > > kb/2*Subscript[CI, 0][t] Subscript[HDye, 1][t], > > Subscript[CI, 1][0] == 0, > > > > Derivative[1][Subscript[HDye, 0]][t] == > > kd Subscript[CI, 0][t] Subscript[Dyes, 0][t] + > > kd/2* Subscript[CI, 1][t] Subscript[Dyes, 1][t] - > > kb Subscript[CI, 0][t] Subscript[HDye, 0][t] - > > kb /2* Subscript[CI, 1][t] Subscript[HDye, 1][t], > > Subscript[HDye, 0][0] == 0, > > Derivative[1][Subscript[HDye, 1]][t] == > > kd Subscript[CI, 1][t] Subscript[Dyes, 0][t] + > > kd Subscript[CI, 0][t] Subscript[Dyes, 1][t] - > > kb Subscript[CI, 1][t] Subscript[HDye, 0][t] - > > kb Subscript[CI, 0][t] Subscript[HDye, 1][t], > > Subscript[HDye, 1][0] == 0 > > }, {Subscript[Dye, 0][t], Subscript[Dyes, 0][t], > > Subscript[CI, 0][t], Subscript[HDye, 0][t], > > Subscript[Dye, 1][t], Subscript[Dyes, 1][t], > > Subscript[CI, 1][t], Subscript[HDye, 1][t]}, {t, 0, 12}]]) > > > > In the NDSolve, what we want to fit is Dye0[t]. So we wrote code for fitting using FindFit: > > > > fit = FindFit[data, > > model[ ka, kr, kd, kb][Subscript[Dye, > > 0]], {{ka, 10^(-4)}, {kr, 10^(-4)}, {kd, 500}, {kb, 500}}, > > Subscript[Dye, 0]] > > > > However, we encountered the error message like this: > > > > FindFit::nrlnum: "The function value {-2.915*10^-7+Subscript[Dye, 0][2.113],-2.758*10^-7+Subscript[Dye, 0][2.256],-2.567*10^-7+Subscript[Dye, 0][2.303],<<16>>,-3.205*10^-9+Subscript[Dye, 0][10.23],-2.083*10^-9+Subscript[Dye,0][10.99],1.608*10^-10+Subscript[Dye, 0][11.99]} is not a list of real numbers with dimensions {22} at {ka,kr,kd,kb} = {0.0001,0.0001,500.,500.}." > > > > The desirable solution for parameter is around ka= 0.67, kr = 10^(-3), kd=1600, kb=1600. > > > > Does anyone know what I am doing wrong?