Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

computation SeriesCoefficient

  • To: mathgroup at smc.vnet.net
  • Subject: [mg130441] computation SeriesCoefficient
  • From: kb <kbru157 at gmail.com>
  • Date: Thu, 11 Apr 2013 04:12:48 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-newout@smc.vnet.net
  • Delivered-to: mathgroup-newsend@smc.vnet.net

How is the SeriesCoefficient[f[x],{x,0,n}] calculated for a very large n? The function f[x] has derivatives of all orders. In the case of interest to me f is a rational function with large degree polynomials in numerator and denominator w.o. common factors. The denominator has a simple positive real root smaller in absolute value than all other roots so  I can use a simple fraction C_1/(x-a_1)
where a_1 is that smallest root and C_1 = Numerator[a_1]/(Denominator)'[a_1], then
SeriesCoefficient of f{x} at x=0 is approximately C/a^(n+1). This is pretty good for large n.  However, whatever algorithm Mathematica uses is also very good and apparently for all n.  Moreover, AbsoluteTiming gives practically 0 sec for both methods for seemingly any n.  So, what is the algorithm used?  ( I could get better approximations by adding in the next fraction C_2/a_2^(n+1), but then I may run into zeros of higher order or complex zeroes.  



  • Prev by Date: Arranging disks (or any object for that matter) be arranged in a
  • Next by Date: Re: Simplify a complex expression
  • Previous by thread: Re: Arranging disks (or any object for that matter) be arranged in a
  • Next by thread: "Programming With Mathematica" Exercise help