Re: Turning a Sequence into a List?
- To: mathgroup at smc.vnet.net
- Subject: [mg130598] Re: Turning a Sequence into a List?
- From: Dana DeLouis <dana01 at icloud.com>
- Date: Thu, 25 Apr 2013 02:52:44 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
On Tuesday, April 16, 2013 12:34:27 AM UTC-4, Rob wrote: > Hello, I'm playing with a problem with minimum coins to make change. > > Here's a problem spot where I look at ways to make up 52 and 53 cents > > (later I'll use v = Range[1,99]. > > v=Range[52,53]; > > sol=(Reduce[25q+10d+5n+p==# &&0<=p<5 &&0<=n<2 &&0<=d<3 > > &&0<=q<4,{q,d,n,p},Integers])& /@v > > (* which gives {(q == 1 && d == 2 && n == 1 && p == 2) || (q == 2 && d > > == 0 && > > n == 0 && p == 2), (q == 1 && d == 2 && n == 1 && > > p == 3) || (q == 2 && d == 0 && n == 0 && p == 3)} *) > < snip> Hello. Does this idea help? coins={p,n,d,q}; Minimize[{Tr[coins],coins.{1,5,10,25}==52,Thread[coins >= 0]},coins,Integers] {4,{p->2,n->0,d->0,q->2}} Minimize[{Tr[coins],coins.{1,5,10,25}==53,Thread[coins >= 0]},coins,Integers] {5,{p->3,n->0,d->0,q->2}} As a side note, there are 49 ways to make 52 with the given coins. equ=1/((1-x) (1-x^5) (1-x^10) (1-x^25) ); SeriesCoefficient[equ,{x,0,52}] 49 = = = = = = = HTH :>) Dana DeLouis Mac & Math 9