Re: Calculation of a not so simple integral
- To: mathgroup at smc.vnet.net
- Subject: [mg131224] Re: Calculation of a not so simple integral
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Wed, 19 Jun 2013 01:26:09 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <kpmns8$h52$1@smc.vnet.net>
Alexei, you might have missed the extensive discussion on this integral some days ago https://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/960f9facb5a3683b?hl=de# Best regards, Wolfgang On 17 Jun., 12:19, Alexei Boulbitch <Alexei.Boulbi... at iee.lu> wrote: > (*Partial Fractions decomposition, Fourier Integrals > > The problem diagnostics: > > Calculate > > Integrate[ Sin[x/2]^2 / x^2 / (x^2-4*Pi^2 )^2 / (x^2 + a^2)^2 , > {x,-oo,oo}, Assumptions-> a>0] > > The integrand is nonnegative, has no poles on the real line and decays > rapidly ~ x^-10 as x->+-oo > > Hi, Roland, > > I checked your expression, it has a pole on the x axis. Check this > > Sin[x/2]^2 / x^2 / (x^2-4*Pi^2 )^2 / (x^2 + a^2)^2//StandardForm > > Could it be the case, that you have just written it down in a wrong way? > > Alexei BOULBITCH, Dr., habil. > IEE S.A. > ZAE Weiergewan, > 11, rue Edmond Reuter, > L-5326 Contern, LUXEMBOURG > > Office phone : +352-2454-2566 > Office fax: +352-2454-3566 > mobile phone: +49 151 52 40 66 44 > > e-mail: alexei.boulbi... at iee.lu