Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Complex path integral wrong

  • To: mathgroup at smc.vnet.net
  • Subject: [mg131348] Complex path integral wrong
  • From: "Dr. Wolfgang Hintze" <weh at snafu.de>
  • Date: Sun, 30 Jun 2013 03:29:02 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-outx@smc.vnet.net
  • Delivered-to: mathgroup-newsendx@smc.vnet.net

I suspect this is a bug 
In[361]:= $Version
Out[361]= "8.0 for Microsoft Windows (64-bit) (October 7, 2011)"

The follwing path integral comes out wrong:

R = 3 \[Pi] ;
Integrate[Exp[I s]/(
  Exp[s] - 1 ), {s, 1 + I, 1 + I R, -1 + I R, -1 + I, 1 + I}] // FullSimplify

Out[351]= 0

It should have the value

In[356]:= (2 \[Pi] I) Residue[Exp[I s]/(Exp[s] - 1 ), {s, 2 \[Pi] I}]

Out[356]= (2 \[Pi] I) E^(-2 \[Pi])

Without applying FullSimplify the result of the integration is

In[357]:= R = 3*Pi; 
Integrate[
 Exp[I*s]/(Exp[s] - 1), {s, 1 + I, 1 + I*R, -1 + I*R, -1 + I, 1 + I}]

Out[358]= 
I*E^((-1 - I) - 3*Pi)*((-E)*Hypergeometric2F1[I, 1, 1 + I, -(1/E)] + 
    E^(3*Pi)*Hypergeometric2F1[I, 1, 1 + I, E^(-1 + I)]) + 
 I*E^(-I - 3*Pi)*(Hypergeometric2F1[I, 1, 1 + I, -(1/E)] - 
    E^(2*I)*Hypergeometric2F1[I, 1, 1 + I, -E]) + 
   I*E^I*(Hypergeometric2F1[I, 1, 1 + I, -E]/E^(3*Pi) - 
    Hypergeometric2F1[I, 1, 1 + I, E^(1 + I)]/E) + 
 I*E^(-1 - I)*(-Hypergeometric2F1[I, 1, 1 + I, E^(-1 + I)] + 
    E^(2*I)*Hypergeometric2F1[I, 1, 1 + I, E^(1 + I)])

which, numerically, is

In[359]:= N[%]

Out[359]= -2.7755575615628914*^-17 + 2.7755575615628914*^-17*I

i.e. zero.

On simpler functions like 1, s and s^2 (instead of Exp[I s]) it works out fine, but not so with e.g. Sin[s] in which case we get 0 again (instead of Sinh[2 \[Pi]]).

The integration topic seems to be full of pitfalls in Mathematica...

Best regards,
Wolfgang



  • Prev by Date: Grids
  • Next by Date: Re: Russian Peasant Multiplication / was question on how to do this
  • Previous by thread: Grids
  • Next by thread: Finding a function within an arbitrary expression