Complex path integral wrong
- To: mathgroup at smc.vnet.net
- Subject: [mg131348] Complex path integral wrong
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Sun, 30 Jun 2013 03:29:02 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
I suspect this is a bug
In[361]:= $Version
Out[361]= "8.0 for Microsoft Windows (64-bit) (October 7, 2011)"
The follwing path integral comes out wrong:
R = 3 \[Pi] ;
Integrate[Exp[I s]/(
Exp[s] - 1 ), {s, 1 + I, 1 + I R, -1 + I R, -1 + I, 1 + I}] // FullSimplify
Out[351]= 0
It should have the value
In[356]:= (2 \[Pi] I) Residue[Exp[I s]/(Exp[s] - 1 ), {s, 2 \[Pi] I}]
Out[356]= (2 \[Pi] I) E^(-2 \[Pi])
Without applying FullSimplify the result of the integration is
In[357]:= R = 3*Pi;
Integrate[
Exp[I*s]/(Exp[s] - 1), {s, 1 + I, 1 + I*R, -1 + I*R, -1 + I, 1 + I}]
Out[358]=
I*E^((-1 - I) - 3*Pi)*((-E)*Hypergeometric2F1[I, 1, 1 + I, -(1/E)] +
E^(3*Pi)*Hypergeometric2F1[I, 1, 1 + I, E^(-1 + I)]) +
I*E^(-I - 3*Pi)*(Hypergeometric2F1[I, 1, 1 + I, -(1/E)] -
E^(2*I)*Hypergeometric2F1[I, 1, 1 + I, -E]) +
I*E^I*(Hypergeometric2F1[I, 1, 1 + I, -E]/E^(3*Pi) -
Hypergeometric2F1[I, 1, 1 + I, E^(1 + I)]/E) +
I*E^(-1 - I)*(-Hypergeometric2F1[I, 1, 1 + I, E^(-1 + I)] +
E^(2*I)*Hypergeometric2F1[I, 1, 1 + I, E^(1 + I)])
which, numerically, is
In[359]:= N[%]
Out[359]= -2.7755575615628914*^-17 + 2.7755575615628914*^-17*I
i.e. zero.
On simpler functions like 1, s and s^2 (instead of Exp[I s]) it works out fine, but not so with e.g. Sin[s] in which case we get 0 again (instead of Sinh[2 \[Pi]]).
The integration topic seems to be full of pitfalls in Mathematica...
Best regards,
Wolfgang