Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg120043] Re: Problem in solving Differential Equation
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Wed, 6 Mar 2013 05:55:52 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130306031441.3FE5E665F@smc.vnet.net>
Arguments to functions (e.g., Sin, Cos) must be enclosed in squares brackets: Sin[x[t]] and Cos[x[t]] Clear[x]; \[Omega] = -2; eqn = x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 // Simplify; sol = NDSolve[ {eqn, x[0] == 1/2, x'[0] == 0}, x[t], {t, 0, 25}][[1]]; ParametricPlot[ Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}], {t, 0, 25}, Frame -> True, Axes -> False, FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ {x, Overscript[x, "."]}), AspectRatio -> 1, PlotStyle -> {{Red, AbsoluteThickness[2]}}] ParametricPlot[ Evaluate[{t, x[t] /. sol}], {t, 0, 10}, Frame -> True, Axes -> False, FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ {t, x}), AspectRatio -> .5, PlotStyle -> {{Green, AbsoluteThickness[3]}}] Bob Hanlon On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty <rahul.6sept at gmail.com> wrote: > Dear all, > > Following differential equation seems to have some error in coding by me. kindly let me know where i have gone wrong. > > Clear[x]; > \[Omega]:=-2; > eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simplify; > sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,1000}][[1]] > ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] > ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] > > Regards, > > rahul >
- References:
- Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving Differential Equation