Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg130239] Re: Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept at gmail.com>
- Date: Thu, 28 Mar 2013 04:05:38 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130306031441.3FE5E665F@smc.vnet.net>
Sir, Can you kindly see what is the mistake in this code of mine. Its not giving me the output. Clear [x,t]; eqn=x'[t]+lambda*x[t]==0; Manipulate[[sol_]=NDSolve[{eqn,x[0]==1/2},x[t],{t,0,50}][[1]]; ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},PlotRange->{{-20,20},{-25,25}},Frame->True,Axes->False,FrameLabel->(Style[#,"Courier",Bold,16]&/@{"x",Overscript[x,"."]}),AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}}],{{lambda,0.5},0,5}] Sincerely, Rahul On 3/6/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: > Arguments to functions (e.g., Sin, Cos) must be enclosed in squares > brackets: Sin[x[t]] and Cos[x[t]] > > Clear[x]; > \[Omega] = -2; > eqn = > x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 // > Simplify; > sol = NDSolve[ > {eqn, x[0] == 1/2, x'[0] == 0}, > x[t], {t, 0, 25}][[1]]; > ParametricPlot[ > Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}], > {t, 0, 25}, > Frame -> True, > Axes -> False, > FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > {x, Overscript[x, "."]}), > AspectRatio -> 1, > PlotStyle -> {{Red, AbsoluteThickness[2]}}] > ParametricPlot[ > Evaluate[{t, x[t] /. sol}], > {t, 0, 10}, > Frame -> True, > Axes -> False, > FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > {t, x}), > AspectRatio -> .5, > PlotStyle -> {{Green, AbsoluteThickness[3]}}] > > > Bob Hanlon > > > On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty > <rahul.6sept at gmail.com> wrote: >> Dear all, >> >> Following differential equation seems to have some error in coding by me. >> kindly let me know where i have gone wrong. >> >> Clear[x]; >> \[Omega]:=-2; >> eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simplify; >> sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,1000}][[1]] >> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >> ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >> >> Regards, >> >> rahul >> >
- References:
- Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving Differential Equation