Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg130241] Re: Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept at gmail.com>
- Date: Thu, 28 Mar 2013 04:06:19 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130306031441.3FE5E665F@smc.vnet.net>
Sir, Its not giving output. The following error its showing ERROR: Set::write: : Tag List in {150 Cos[15 t]+5.` Sin[15 t]==0,False}[t_] is Protected. DSolve::dsfun: "10\ Sin[15\ t] cannot be used as a function." ReplaceAll::reps: "{150\ Cos[15\ t]+5.\ Sin[15\ t]==0,False} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing" These ERROR messages are coming repeatedly. Regards, Rahul On 3/28/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: > Your DE can be solved exactly using DSolve. > > Manipulate[ > eqn = x'[t] + lambda*x[t] == 0; > sol[t_] = x[t] /. DSolve[ > {eqn, x[0] == 1/2}, x[t], t][[1]]; > ParametricPlot[ > {sol[t], sol'[t]}, > {t, 0, 25}, > PlotRange -> {{-0.1, 0.6}, {-3, 0.5}}, > Frame -> True, > Axes -> False, > FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > {x, Overscript[x, "."]}), > AspectRatio -> 1, > PlotStyle -> {{Red, AbsoluteThickness[2]}}], > {{lambda, 0.5}, 0, 5, 0.01, Appearance -> "Labeled"}] > > > Bob Hanlon > > > On Wed, Mar 27, 2013 at 11:29 PM, Rahul Chakraborty > <rahul.6sept at gmail.com> wrote: >> Sir, >> >> Can you kindly see what is the mistake in this code of mine. Its not >> giving me the output. >> >> >> Clear [x,t]; >> eqn=x'[t]+lambda*x[t]==0; >> Manipulate[[sol_]=NDSolve[{eqn,x[0]==1/2},x[t],{t,0,50}][[1]]; >> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},PlotRange->{{-20,20},{-25,25}},Frame->True,Axes->False,FrameLabel->(Style[#,"Courier",Bold,16]&/@{"x",Overscript[x,"."]}),AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}}],{{lambda,0.5},0,5}] >> >> >> >> Sincerely, >> >> Rahul >> >> On 3/6/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: >>> Arguments to functions (e.g., Sin, Cos) must be enclosed in squares >>> brackets: Sin[x[t]] and Cos[x[t]] >>> >>> Clear[x]; >>> \[Omega] = -2; >>> eqn = >>> x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 // >>> Simplify; >>> sol = NDSolve[ >>> {eqn, x[0] == 1/2, x'[0] == 0}, >>> x[t], {t, 0, 25}][[1]]; >>> ParametricPlot[ >>> Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}], >>> {t, 0, 25}, >>> Frame -> True, >>> Axes -> False, >>> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ >>> {x, Overscript[x, "."]}), >>> AspectRatio -> 1, >>> PlotStyle -> {{Red, AbsoluteThickness[2]}}] >>> ParametricPlot[ >>> Evaluate[{t, x[t] /. sol}], >>> {t, 0, 10}, >>> Frame -> True, >>> Axes -> False, >>> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ >>> {t, x}), >>> AspectRatio -> .5, >>> PlotStyle -> {{Green, AbsoluteThickness[3]}}] >>> >>> >>> Bob Hanlon >>> >>> >>> On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty >>> <rahul.6sept at gmail.com> wrote: >>>> Dear all, >>>> >>>> Following differential equation seems to have some error in coding by >>>> me. >>>> kindly let me know where i have gone wrong. >>>> >>>> Clear[x]; >>>> \[Omega]:=-2; >>>> eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simplif= y; >>>> sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,1000}][[1]] >>>> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >>>> ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >>>> >>>> Regards, >>>> >>>> rahul >>>> >>> >
- References:
- Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving Differential Equation