Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg130240] Re: Problem in solving Differential Equation
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 28 Mar 2013 04:05:59 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130306031441.3FE5E665F@smc.vnet.net>
Your DE can be solved exactly using DSolve. Manipulate[ eqn = x'[t] + lambda*x[t] == 0; sol[t_] = x[t] /. DSolve[ {eqn, x[0] == 1/2}, x[t], t][[1]]; ParametricPlot[ {sol[t], sol'[t]}, {t, 0, 25}, PlotRange -> {{-0.1, 0.6}, {-3, 0.5}}, Frame -> True, Axes -> False, FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ {x, Overscript[x, "."]}), AspectRatio -> 1, PlotStyle -> {{Red, AbsoluteThickness[2]}}], {{lambda, 0.5}, 0, 5, 0.01, Appearance -> "Labeled"}] Bob Hanlon On Wed, Mar 27, 2013 at 11:29 PM, Rahul Chakraborty <rahul.6sept at gmail.com> wrote: > Sir, > > Can you kindly see what is the mistake in this code of mine. Its not > giving me the output. > > > Clear [x,t]; > eqn=x'[t]+lambda*x[t]==0; > Manipulate[[sol_]=NDSolve[{eqn,x[0]==1/2},x[t],{t,0,50}][[1]]; > ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},PlotRange->{{-20,20},{-25,25}},Frame->True,Axes->False,FrameLabel->(Style[#,"Courier",Bold,16]&/@{"x",Overscript[x,"."]}),AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}}],{{lambda,0.5},0,5}] > > > > Sincerely, > > Rahul > > On 3/6/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: >> Arguments to functions (e.g., Sin, Cos) must be enclosed in squares >> brackets: Sin[x[t]] and Cos[x[t]] >> >> Clear[x]; >> \[Omega] = -2; >> eqn = >> x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 // >> Simplify; >> sol = NDSolve[ >> {eqn, x[0] == 1/2, x'[0] == 0}, >> x[t], {t, 0, 25}][[1]]; >> ParametricPlot[ >> Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}], >> {t, 0, 25}, >> Frame -> True, >> Axes -> False, >> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ >> {x, Overscript[x, "."]}), >> AspectRatio -> 1, >> PlotStyle -> {{Red, AbsoluteThickness[2]}}] >> ParametricPlot[ >> Evaluate[{t, x[t] /. sol}], >> {t, 0, 10}, >> Frame -> True, >> Axes -> False, >> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ >> {t, x}), >> AspectRatio -> .5, >> PlotStyle -> {{Green, AbsoluteThickness[3]}}] >> >> >> Bob Hanlon >> >> >> On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty >> <rahul.6sept at gmail.com> wrote: >>> Dear all, >>> >>> Following differential equation seems to have some error in coding by me. >>> kindly let me know where i have gone wrong. >>> >>> Clear[x]; >>> \[Omega]:=-2; >>> eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simplify; >>> sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,1000}][[1]] >>> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >>> ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] >>> >>> Regards, >>> >>> rahul >>> >>
- References:
- Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving Differential Equation